
Pr inted at the Mathematical Centre at AJasterdam,49,2nd Boerhaavestraat, The Netherlands.

The Mathematical Centre, founded the 11th
p r o f i t i n s t i t u t i o n aiming at th of February 1946, is a non -

1 J 4 U | | I U ~ ~ o n

~hPePll;:tt~:~s. and zs sponsored by the Net~: ~az~s raathematlcs and i t s
._ _ , a n a s O r g a n i z a t i o n f o r t h e --=- r . Government t h r o u g h
~ -.o.> and the Central Organization ,or~_'a~ce~en~ o* ~ r e Research
zn t h e N e t h e r l a n d s (T . N . O .) , by t h e M u n i c i p a l i t y o f Amsterdam and by s e v e r a l i n d u s t r i e s , pP i e d S c i e n t i f i c R e s e a r c h

DRAFT REPORT ON THE

ALGORITHM IC LANGUAGE

ALGOL 68

A.VAN WIJNGAARDEN (EDITOR),

B.J. MAILLOUX, J.E.L. PECK

AND CH.A. KOSTER

COMMISSIONED BY

WORKING GROUP 2" ! ON ALGOL

OF THE

INTERNATIONAL FEDERATION

FOR INFORMATION PROCESSING

SUPPLEMENT

TO ALGOL BULLETIN 26

MATHEMATISCH CENTRUM

MR 93

SECOND PRINTING. MARCH 1988

Contents

pp. Provisional Prologue

PP. I. History of the Draft Report

PP.2. Membership of the Working Group

PP. 3. Distribution of the Draft Report

PP. 4. References

0. Introduction

0. I. Aims and principles of design

0. I.I. Completeness and clarity of description. 0. I .2. 0rthogonal

design. 0.1.3. Security. 0.1.4. Efficiency. 0.1.4. I. Static

mode checking. 0. I. 4.2. Independent compilation. 0. I. 4.3. Loop

optimizat ion

0.2. Comparison with ALGOL 60

0.2. I. Values in ALGOL 68. 0.2.2. Declarations in ALGOL 68.

0.2.3. Dynamic storage allocation in ALGOL 68. 0.2,4. Collateral

elaboration in ALGOL 68. 0.2.5. Standard declarations in ALGOL 68.

0.2.6. Some particular constructions in ALGOL 68

I. Language and metalanguage

1.1. The method of description

I. I. I. The strict, extended and representation languages.

1.1.2. The syntax of the strict language. I. 1.3. The syntax of

the metalanguage. 1.1.4. The production rules of the metalanguage.

1.1.5. The production rules of the strict language. 1.1.6. The

semantics of the strict language. 1.1.7. The extended language.

1.1.8. The representation language

1.2. The metaproduction rules

1.2.1. Hetaproduction rules of modes. 1.2.2. Metaproduction rules

associated with modes. 1.2.3. Metaproduction rules associated

with phrases. 1.2.4. Metaproduction rules associated with

formulas. I. 2.5. Other metaproduction rules

I. 3. Pragmatics

2. The computer and t h e program

2 .1 . Syntax

2.2. Terminology

2.2.1. Objects. 2.2.2. Relationships. 2.2.3. Values. 2.2.3.1.

Plain values. 2.2.3.2. Structured values. 2.2.3.3. Multiple

Contents continued

values. 2.2.3.4. Rout

2.2.4. Modes and scopes. 2.2.4.1. Modes' 2.2.4,2. Scopes,
inner and outer scopes. 2.2.5. Actioas

2.3. Semantics

3. Basic tokens and general constructions

3.0. Syntax /

3.0.1. Introduction. 3.0.2. Letter tokens. 3.0.3. Denotation

tokens. 3.0.4. Action tokens. 3.0.5. Declaration tokens.

3.0.6. Syntactic tokens. 3.0.7. Sequencing tokens. 3.0.8.

Hip tokens. 3.0.9. Extra tokens and comments
3.1. Symbols

3.1.1. Representations. 3.1.2. Remarks

4. Identification and context conditions

4.1. Identifiers

4.1.1. Syntax. 4.1.2. Identification of identifiers
4.2. Indications

4.2.1. Syntax. 4.2.2. Identification of indications
4.3. Operators

4.3.1. Syntax. 4.3.2. Identification of operators
4.4. Context conditions

4.4.1. The identification condition. 4.4.2. The mode conditions.
4.4.3. The uniqueness cond/tions

5. Denotations

5.1. Plain denotations

5.1.1. Integral denotations. 5.1.2. Real denotations. 5.1.3.
Boolean denotations.

5.2. Row of boolean denotations

5.3. Row of character denotations

5.4. Routine denotations

5.5. Format denotations

5.5.1. Syntax. 5.5.1.1. Integral patterns. 5.5.1.2. Real

patterns. 5.5.1.3. Boolean patterns. 5.5.1.4. Complex patterns.

5.5.1.5. String patterns. 5.5.1.6. Transformats. 5.5.2. Semantics

Contents continued 2

6. Phrases

6.1. Serial phrases

6.2. Unitary statements

6.3. Collateral phrases

6.4. Closed phrases

6.5 Conditional clauses

7- Unitary Declarations

7.1. Declarers

7.2. Mode declarations

7.3. Priority declarations

7.4. Identity declarations

7.5. Operation declarations

8. Unitary expressions

8.1. Formulas

8.2. Coercends

8.2.1. Unaccompanied calls. 8.2.2. Expressed coercends.

8.2.3. Depressed coercends. 8.2.4. United coercends. 8.2.5.

Widened coercends. 8.2.6. Arrayed coercendsj

Primaries 8.3.

8.4. Slices

8.5. Generators

8.6. Field selections

8.7. Accompanied calls

8.8. Assignations

8.9. Conformity relations

8.10. Identity relations

9. Extensions

9.1. Comments

9.2. Contracted declarations

9.3. Repetitiv e statements

9.4. Contracted cond/tional clauses

9.5. Complex values

Contents continued 3

I0. Standard declarations

10.1.

10.2.

10.3.

10.4.

10.5.

Environment enquiries

Standard priorities and operations

I 0.2.0. Standard priorities. I0.2.1. Operations on boolean

operands. 10.2.2. Operations on integral operands. 10.2.3.

Operations on real operands. 10.2.4. Operations on

arithmetic operands. 10.2.5. Complex structures and

associated operations. 10.2.6. Bit rows and associated

operations. 10.2.7. Operations on character operands.

10.2.8. String mode and associated operations. I0.2.9J

Operations Combined with assignations

Standard mathematical constants and functions

Synchronization operations

Tramsput declarations

10.5.0. Transput modes and straightening. 10.5.0. I.

Transput modes. 10.5.0.2. Straightening. 10.5. I. Channels and

files. 10.5.1.1. Channels. 10.5.1.2. Files. 10.5.2.

Formatless output. 10.5.3. Formatless input. 10.5.4.

Formatted output. 10.5.5. Formatted input. 10.5.6. Binary

output. I0.5.7. Binary input.

I. Examples

11. I. Complex square root

11.2. Innerproduct I

11.3. Imnerproduct 2

1 1.4. Innerproduct 3

1 1.5. Largest @l~ent

11.6. Euler su.~tion

11.7. The norm of a vector

11.8. Determinant of a matrix

11.9. Greatest common divisor

11. I0. Continued ~ fraction

1 1.11. Formula manipulation

11.12. Information retrieval

Contents continued 4

12. Glossary

~E. Ephemeral Epilogue

EE. 1. Errata

EE. I.I. Syntax. EE. 1.2. Representations. EE. 1.3. Semantics

EE.2. Correspondence with the Editor

EE.2.1. Example of a letter to the Editor. EE.2.2. Reply

by the Editor to the letter in EE.2.1. EE.2.3. Second example

of a letter to the Editor. EE.2.4. Reply option by the Editor

to the letter in EE.2.3. EE.2.5. Third example of a letter

to the Editor. EE. 2.6. Reply by the Editor to the letter in

EE.2.5

PP. Provisional Prologue

PP.I. History of the Draft Report {Habent sua fata libelli.

De litteris, Terentianus Maurus. }

a) Working Group 2.1 on ALGOL of the International Federation for

Information Processing hat; discussed the development of "ALGOL X", a

successor to ALGOL 60 [3] since 1963. At its meeting in Princeton in

May 1965, WG 2. I invited written descriptions of the language based on

the previous discussions. At the meeting near Grenoble in October 1965,

three reports describing more or less complete languages were amongst

the contributions, by Niklaus Wirth [5], by Gerhard SeegmGller [4] and

by Aad van Wijngaarden [6]. In [4] and [5], the descriptional technique

of [3] was used, whereas [6] featured a new technique for language design

and definition. Another significant contribution was a paper by Tony

Hoare [2].

b) At meetings in Kootwijk in April 1966, Warsaw in October 1966 and

Zandvoort near Amsterdam in May 1967, a number of successive approximations

to a final report were submitted by a team working in Amsterdam,

consisting first of A. van Wijngaarden and Barry Mailloux [7], later

reinforced by John Peck [8], and finally by Kees Koster. A rather complete

version [9] was used during a course on ALGOL 68 held in Amsterdam in

the end of 1967. This course served as a test case and the present Draft

Report was made on the basis of it using the experience of explaining

the language to a skilled audience.

c) The authors acknowledge with pleasure and thanks the whole-hearted

cooperation, support, interest, criticism and violent objections from

members of WG 2. I and many other people interested in ALGOL {Rev.

3.15, 16}. Deserving special mention are Jan Garwick, Jack Merner,

Peter Ingerman and Manfred Paul for [I] and above all Miss Hetty

Schuuring for still smiling after several years of most demanding

typing of a continuously varying manuscript. An occasional choice of

a, not inherently meaningful, identifier in the sequel may compensate

for not mentioning more names in this section.

d) The dogmatic, perhaps pedantic, approach of the authors, and the many

errors they made, caused this Draft Report to appear late; they are

convinced, however, that their approach is the right one.

pP. 2. Membership of the Working Group

{Verum homines notos sumere odiosum est.

Pro Roscio Amerino, M.T. Cicero. }

At this moment, the members of ~K} 2.1 are:

F.L. Bauer, H. Beki~, L. Bolliet, E.W. Dijkstra, F.G. Duncan, A.P. Ershov,

J.V. Garwick, A. Grau, C.A.R. Hoare, P.Z. Inger~,an, E.T. Irons, C. Katz,

I.O. Kerner, P.J. Landin, S.S. Lavrov, H. Leroy, J. Loeckx, B.J. Mailloux,

A. Mazurkiewicz, J. McCarthy, J.N. Merner, S. Moriguti, P. Naur, M. Hivat,

M. Pacelli, M. Paul, J.E.L. Peck, W.L. van der Poel (Chairman), B. Randell

D.T. Ross, K. Samelson, G. Seegm~ller, W.M. Turski (Secretary),

A. van Wijngaarden, N. Wirth, M. Woodger and N. Yoneda.

PP. 3. Distribution of the Draft Report

{A perfect judge will read each work of wit

with the same spirit that its author writ.

An Essay on Criticism, A. Pope.}

a) The Draft Report is, on request of WG 2. I, distributed as a supplement

to ALGOL Bulletin 26 in order that all people interested in ALGOL have

insight in the Draft Report and can send remarks to improve the final

Report. These remarks should be sent to:

EDITOR ALGOL 68,

Mathematisch Centrum,

2e Boerhaavestraat 49,

AMSTERDAM-O, HOLLAND.

b) All rA~vks will be considered, but not necessarily individua!lY

answered. If they are received in time and if they seem relevant, then

they will be taken into account in drafting the final Report, which will

be submitted for approval to WG 2. I, Technical Co~ttee 2 on Progra~,,~ug

Languages and the General Assembly of IFIP.

c) It is pointed out that anyone, even an author, is invited to send

remarks. In order to m,ke it at all possible to review all incoming

r~,A~ks, one is, however, requested to use, as far as feasible, the

method of indicating errata given in the Ephemeral Epilogue; this

method will be clear after reading at least a part of the Draft Report.

r~re -~- C O n L i N U e ~ • -

d) Before reading all of the Draft Report, one should first read
Sections EE 2.5, 6.

PP. 4. References

[I] J.V. Garwick, J.N. Merner, P.Z. Ingerman and M. Paul,

Report of the ALGOL-X-I-O Subcommittee, WG 2.1 Working Paper,

July 1966.

[2] C.A.R. Hoare, Record Handling, WG 2.1 Working Paper, October 1965;

also AB.21.3.6, November 1965.

[3] P. Naur (Editor), Revised Report on the Algorithmic Language ALGOL 60,

Regnecentralen, Copenhagen, 1962, and elsewhere.

[4] G. SeegmGller, A Proposal for a Basis for a Report on a

Successor to ALGOL 60, Bavarian Acad. Sci., Munich, October 1965.

[5] N. Wirth, A Proposal for a Report on a Successor of ALGOL 60,

Mathematisch Centrum, Amsterdam, MR 75, August 1965.

[6] A. van Wijngaarden, Orthogonal Design and Description of a Formal

Language, Mathematisch Centrum, Amsterdam, MR 76, October 1965.

[7] A. van Wijngaarden and B.J. Mailloux, A Draft Proposal for the

Algorithmic Language ALGOL X, WG 2.1 Working Paper, October 1966.

[8] A. van Wijngaarden, B.J. Mailloux and J.E.L. Peck, A Draft Proposal

for the Algorithmic Language ALGOL 67,

Mathematisch Centrum, Amsterdam, MR 88, May 1967.

[9] A. van Wijngaarden, B.J. Mailloux and J.E.L. Peck, A Draft Proposal

for the Algorithmic Language ALGOL 68,

Mathematisch Centrum, Amsterdam, MR 92, November 1967.

0. Introduction

0. I. Aims and principles of design

a) In defining the Algorithmic Language ALGOL 68, the members of

Working Group 2. I of the International Federation for Information

Processing express their belief in the value of a co~m~on programming

l=-guage serving many people in many countries.

b) The language is designed to com~smicate aigorithma, to execute them

eff/ciently on a variety of different computers, and to aid in teaching

them to students.

c) The members of the Group, influenced by several years of experience

with ALGOL 60 and other programming languages, hope that the following

has been achieved:

0.1.1. Completeness and clarity of description

The Group wishes to contribute to the solution of the problems of

describing a 1--guage clearly and completely. It is recognized, however,

that the method adopted in this Report may be difficult for the

uninitiated reader.

0. 1.2. Orthogonal design

The number of independent primitive concepts was minimized in order that

the language be easy to describe, to learn, and to implement. On the

other h,nd, these concepts have been applied "orthogonally" in order to

maximize the expressive power of the language, and yet without introducing

deleterious superfluities.

0.1.3. Security

ALGOL 68 has been designed in such a way that nearly all syntactical and

rummy other errors can be detected easily before they lead to calamitous

results. Furthermore, the opportunities for making such errors are

greatly restricted.

0.1.h. Efficiency

ALGOL 68 allows the programmer to specify progr~dms which can be run

efficiently on present-day computers and yet do not require sophisticated

and time-consuming optimization features of a compiler; see e.g. 11.8.

). 1.4.1 • Static mode checking ";~ ~r~

J

~he syntax of ALGOL 68 is such that no mode checking during run time

[s necessary except during the elaboration of confcrnlity-relations {8.9}

~he use of which is required only in those cases in which the progr-mmer

.=xplicitly makes use of the flexibility offered by the united mode

Feature.

3. I. ~. 2. Independent compilation

~LGOL 68 has been designed such that the main line programs and procedure

can be compiled independently of one another without loss of object

program efficiency, provided that during each such independent compilation

specification of the mode of all nonlocal quantities is provided; see

the remarks after 2.3. c.

0. I.~.3. Loop optimization

Iterative processes are formulated in ALGOL 68 in such a way that

straightforward application of well-known optimization techniques

yields large gains during run time without excessive increase of

compilation time.

0.2. Comparison with ALGOL 60

a) ALGOL 68 is a language of wider applicability and power than ALGOL 60.

Although influenced by the lessons learned from ALGOL 60, ALGOL 68 has

not been designed as an expansion of ALGOL 60 but rather as a completely

new language based on new insights into the essential, fundamental

concepts of computing and a new description technique.

b) The result is that the successful features of ALGOL 60 reappear in

ALGOL 68 but as special cases of more general constructions, along

with completely new features. It is, therefore, difficult to isolate

differences between the two languages; however, the following sections

are intended to give insight into some of the more striking differences.

0.2. I. Values in ALGOL 68

a) Whereas ALGOL 60 has values of the types integer, real, boolean and

string, ALGOL 68 features an infinity of "modes", i.e. generalizations

of the concept type.

0.2.1. continued

b) Each plain value is either arithmetic, i.e. of integral or real mode

and then it is of one of several lengths, or it is of boolean or

character mode.

c) In ALGOL 60, composition of values is possible into arrays, whereas

in ALGOL 68, in addition to such "multiple" values, also "structured"

values, composed of values of possibly different modes, are defined and

manipulated. An example of a multiple value is a character array, . which

corresponds approximately to the ALGOL 60 string; examples of structured

values are complex numbers and symbolic formulae.

d) In ALGOL 68, the concept of a "name" is introduced, i.e. a value

which is said to "refer to" another value; such a name-value pair

corresponds to the ALGOL 60 variable. However, any name may take the

value position in a name-value pair and thus chains of indirect addresses

can be built up.

e) The ALGOL 60 concept of a procedure body is generalized in ALGOL 68

to the concept "routine", which also includes the formal parameters,

and which is itself a value and therefore can be manipulated like any

other value; the ALGOL 68 concept "format" has no ALGOL 60 counterpart.

f) In contrast with plain values and multiple and structured values

composed of plain values only, the significance of a name, routine or

format or of a ~altiple or structured value composed of names, routines

or formats, possibly amongst other values, is, in general, dependent on

the context in which it appears. Therefore, the use of names, routines

and formats is subject to some natural restrictions related to their

"scope".

0.2.2. Declarations in ALGOL 68

a) Whereas ALGOL 60 has type declarations, array declarations, switch

declarations and procedure declarations, ALGOL 68 features the "identity-

declaration" whose expressive power includes ,11 of these, and more. In

fact, the Identlty-declaration declares not only variables, but also

constants, of any mode and, moreover, forms the basis of a highly efficien

and powerful parameter mechanism.

2.2. continued

Moreover, in ALGOL 68, a "mode-declaPatic~" permits the construction

new modes from already existing ones. In particular, the modes of

itiple values and structured values ~ be defined this way; in addition

union of modes may be defined for use[in an identity-declaration

lowing each value referred to by a given name to be of one of the

~ modes.

Finally, in ALGOL 68, a "priorlty-declaratlon" and an "operation-

claratlon" permit the introduction of new operators, the definition

their operation and the extension or revision of the class of

erands applicable to already established operators.

2.3. Dynamic storage allocation in ALGOL 68

ereas ALGOL 60 (apart from the so-called "own dynamic arrays") implies

"stack"-oriented storage-allocation regime, sufficient to cope with a

;atically (i.e. at compile time) determined number of values, ALGOL 68

'ovides, in addition, the ability to generate a dynamically (i.e. at run
i

me) determined number of values, which ability implies the use of

[ditional, well established, storage-allocat ion techniques.

2.4. Collateral elaboration in ALGOL 68

lereas, in ALGOL 60, statements are "executed consecutively", in

~GOL 68 "phrases" are "elaborated serially" or "collaterally". This last

Lcility is conducive to more efficient object programs under many

Lrcumstances, and increases the expressive power of the language.

~cilities for parallel progr,mm~ng, though restricted to the essentials

i view of the none-too-advanced state of the art, have been introduced.

.2.5. Standard declarations in ALGOL 68

~e ALGOL 60 standard functions are all included in ALGOL 68 along

[th many other standard declarations. Amongst these are "environment

~quiries", which make it possible to determine certain properties of

implementation, and "transput" declarations, which make it

~ssible, at run time, to obtain data from and to deliver results to

• ternal media.

0.2.6- Some p a r t i c u l a r construct ions in ALGOL 68

a) The ALGOL 60 concepts of block, compound statement and parenthesized

expression are unified in ALGOL 68 into "closed-clause". A closed-clause

may be an expression and possess a value. Similarly, the ALGOL 68

,,assignatlon" , which is a generalization of the ALGOL 60 assignment

statement, may be an expression and, as such, also possesses a value.

b) The ALGOL 60 concept of subscription is generalized to the ALGOL 68

concept of "indexing", which allows the selection not only of a single

element of an array but also of subarrays with the same or any smaller

dimensionality and with possibly altered bounds.

c) ALGOL 68 provides not only the multiple values mentioned in 0.2.1 .c,

but also ,,collateral-expressions" which serve to compose these values

from other, simpler values.

d) The ALGOL 60 for statement is modified into a more concise and

efficient "repetitive statement".

e) The ALGOL 60 conditional expression and conditional statement, unified

into a ,,conditional-clause", are improved by requiring them to end with

a closing symbol whereby the two alternative clauses admit the same

syntactic possibilities. Moreover, the conditional-clau~e~c~r~is generalized

into a "case"cla user which allows the efficient seneca from an arbitrary

number of clauses depending on the value of an integral expression.

f) Some less successful ALGOL 60 concepts, such as own quantities and

integer labels have not been included in ALGOL 68, and some concepts like

designational expressions and switches do not appear as such in ALGOL 68,

but their expressive power is included in other, more general, constructions.

{True wisdom knows

it must comprise

some nonsense

as a compromise,

lest fools should fai

to find it wise.

Grooks, Piet Heim

. Language and metalanguage

,I. The method of description

• 1.1. The strict, extended and representation languages

) ALGOL 68 is a langt~age in which "programs" can be formulated for

computers", i.e. "automata" or "human beings". It is defined in three

tages, the "strict language", "extended language" and "representation

anguage".

) For the definition partly the "English language", and partly a "formal

anguage" is used. In both languages, and also in the strict lauguage and

he extended language, typographical marks are used which bear no relation

.o those used in the representation language.

i. 1.2. The syntax of the strict language

L) The strict language is defined by means of a syntax and semantics.

Ehis syntax is a set of "production rules" for "notions", i.e. nonempty

sequences of "small letters" (,,abcdefghlJkl~o~x~rstuvwxyz"), possibly

interspersed with nonsignificant blanks and/or hyphens, f

{Note that those small letters are in a different type font than

this sentence. }

b) A "list of notions" either is empty, or is a notion, or consists of

a list of notions followed either by a "coma" (",") or by a comma followed

by a notion.

c) A production rule for a notion consists of that notion, possibly

preceded by an "asterisk" ("*"), followed by a "colon" (":") and followed

by a list of notions, a "direct production" of that notion, and followed

by a "point" (".").

d) A "symbol" is a notion ending with 'symbol'.

e) A "production" of a given notion is either a direct production of that

given notion or a list of notions obtained by replacing a second notion

in a production of the given notion by a direct production of that second

notion.

f) A "terminal production" of a notion is a production of that notion

consisting of symbols and commas only.

I. 1.2. continued

{In the production rule
,varlable-polnt ~eral : inteEy al part option, fractional part.

15.1.2.1 .b) of the strict language,

,integral part option, fractional p~t'
is a direct production of the notion ,variable-polnt ntnueral' • A terminal

production of this same notion is
'dlglt zero symbol, point s~nbol, digit one symbol'.

The notion 'diglt zero symbol' is an example of a symbol. The line

,twas brilllg and the slithy toves' is not a relevant notion of the

strict language, in that it does not end with ,symbol' and no production

rule for it is given (1.1.5 Step 3, 4). }

I .I .3. The syntax of the metalanguage ..

a) The production rules of the strict language are partly enumerated and

partly generated with the aid of a "metslanguage" whose syntax consists of
, " s", nonempty sequences of

a set of production rules for ~netanotxon i.e.

"capital letters" ("ABCDEFGHIJKLMNOPQRSTUVWXYZ")"
{NOTE THAT THOSE CAPITAL LETTERS ARE IN A DIFFERENT TYPE FONT THAN

THIS SEnTEnCE. }
or consists

• S " b) A "list of metanotxon either is empty or is a notion,

of one or more metanotions separated, and possibly preceded and/or

followed, by notions and/or blanks.

c) A production rule for a metanotion consists of that metanotion

followed by a colon and followed by a list of metanotions, a direct

production of that metanotion, and followed by a point.

d) A production of a given metanotion is either a direct production of

that given metanotion or a list of metanotions obtained by replacing a

second metanotion in a production of the given metanotion by a direct

production of that second metanotion.

e) A terminal production of a metanotion is a production of that

metanotion which is a ~÷'~^~ P fo~s~bl~ *~P~yl 5~ ~*'~c~ o~ ~mall q.~tkk~rs.

1.1.3. continued

{In the production rule

'TAG : LETTER. ',

derived from 1.2.1.1, 'LETTER' is a direct production of the metanotion

'TAG'. A particular terminal producltign ' of the metanotion 'TAG' is the
| ~ ~

notion 'letter x' (see I .2.1.m, n)..~ production rule

'EMPTY: .' (1.2.1:i)~

has an empty direct production. }

I. I. ~. The production rules of the metalanguage

The production rules of the metalanguage are the rules obtained from

the rules in Section I .2 in the following steps:

Step I: If some rule contains one or more "semicolons" (";"), then it is

replaced by two new rules, the first of which consists of the part of

that rule up to and including the first semicolon with that semicolon

replaced by a point, and the second of which consists of a copy of

that part of the rule up to and including the colon, followed by the

part of the original rule following its first semicolon, whereupon~

Step 1 is taken again ;

Step 2: A number of production rules for the metanotion 'ALPHA' {1.2.1.n}

each of whose direct productions is another small letter, may be added.

{For instance, the rule

'TAG : LETTER ; TAG LETTER ; TAG DIGIT.',

from 1.2.1.1 is replaced by the rules

'TAG : L~TIER.' and 'TAG : TAG LETIER ; TAG DIGIT. ',

and the second of these is replaced by

'TAG :TAG L~ITER.' and 'TAG :TAG DIGIT.'

thus resulting in three rules from the original one.

The reader may find it helpful to read ":" as "may be a", "," as

"followed by a" and ";" as "or a". }

1. 1.5. The production rules of the strict language

The production rules of the strict language ~e She rules obtained in

the following steps from the rules given in Chapters 2 up to 8 inclusive

under Syntax:

Step I: Identical with Step I of 1.1.~ ;

1 • 1 • 5 . c o n t i n u e d

Step 2 : I f a g i ven r u l e now con ta i ns one or more sequences o f c a p i t a l

l e t t e r s , t h e n t h i s (t h e s e) s equence (s) i s (a r e) i n t e r p r e t e d as (a)

sequence(s) of the metauotions of Section 1.2 {The metanotions of

1.2 have been chosen such that this interpretation is unique.), and

then for each terminal production of such a metamotion, a new rule

is obtained by replacing that metanotion, throughout a copy of the

given rule, by that terminal production, whereupon the given rule is

discarded and Step 2 is taken; otherwise, the given rule is a production

rule of the strict language. ~,~
Step 3: A number of production rules for the notion$'other~Indication'~

a ~ e ~ . d i f f e r e n t
e , each o f whose d i r e c t product ions i s

f rom any o the r symbol may be added.
Step ~: A number o f p r o d u c t i o n r u l e s may be added f o r t he n o t i o n s

'other ccmuent it~m~' {3.0.9.c} and 'other string item' {5.3.1 .b} each

of whose direct productions is a symbol different from any character-

token with the restrictions that no other-cant-item is the cc~ent-

symbol and no other-string-it~u is the quote-symbol.

{The r u l e

,actual LOWPER bound : strict LOWPER bound.'

derived from 7.1.1.r by Step I is used in Step 2 to provide two

production rules of the strict language, viz.

,actual lower bound : strict lower bound.' and

'ac~! upper bound : strict upper bound. '.

Note that

'actual lower bound : strict upper bound.'

is not a production rule of the strict language, since the replacement

of the metanotion 'LONFER' by one of its productions must be consistent

throughout. Since scrape metauotions have an infinite number of terminal

productions, the number of notions of the strict language is infinite

and the number of production rules for a given notion may be infinite;

moreover, since some metanotions have terminal productions of infinite

length, some notions are infinitely long, For examples see 4.1.1.

Some production rules obtained from a rule containing a metanotion may

be blind alleys in the sense that no production rule is given for some

i notion to the right of the colon e~eh though it is not a symbol. }

1.I.6. The semantics of the strict language

L) A terminal production of a notion is considered as a linearly ordered

sequence of symbols. This order is called the "textual order", and

'following" ("preceding") stands for "textually ~mmediately following"

"textually ~,,mediately preceding") in the rest of this Report.

typographical display features, such as blank space, change to a new line,

md change to a new page do not influence this order.

,) A sequence of symbols consisting of a second sequence of symbols

,receded and/or followed by (a) sequence(s) of symbols "contains" that

~econd sequence of symbols.

) Unless otherwise specified {d}, a "paranotion" at an occurrence not

ruder "Syntax", not between apostrophes and not within another paranotion

~tands for any terminal production of some notion; a paranotion being

~ither

) a notion ending with 'symbol', i~-~-~a@e it then stands for

itself (e.g. '~0egin-symbol"}, or

i) a notion whose production rule(s) do(es) not begin with an asterisk,

• " it then stands for any terminal production of itself

(e.g., "r~mber-token" (3.0.3.b) stands for 'digit zero symbol', 'digit

one symbol', 'digit two symbol', 'digit three symbol', 'digit four

symbol', 'digit five symbol', 'digit six syn~0ol', 'digit seven symbol'

'digit eight symbol', 'digit nine symbol', 'point symbol' or 'times

ten to the power symbol' }, or

ii) a nots whose production rule(s) do(es) begin with an asterisk, ~L-

it then stands for any terminal production of any of its

direct productions {e.g. "trimscrlpt" (8.4.1.1) stands for any terminK

production of 'trimmer option' or ' subscript '. }, or

v) a paranotion followed by "s", or a paranotign ending with "y" in
fA~

which "y" has been replaced by "ies", " " it then stands

for sc~e number of the terminal productions stood for by that paranoti4

{e.g. "trimscripts" stands for some number of terminal productions of

'trimmer option' and/or 'subscript', and "primaries" stands for some

number of terminal productions stood for by 'primary'.), or

) a paranotion whose first small letter has been replaced by the corres-

ponding capital letter, in..w/~i-~J.~ it then stands for the terminal

productions stood for by that paranotion before the replacement

1 • I • 6. continued I

{e.g. "Identifiers" stands for what 'identifiers' stands for}, or

vi) a paranotion in which a "mode", i.e. a terminal production of 'MODE',

has been omitted, ~ it then stands for any termina 1

production stood for by any paranotion from which the given paranotion

could be obtained by omitting a terminal production of 'MODE' {e.g. ?

"slice" stands for any terminal production of%MMOl~ sli ceI@ (8.4.1.a),

where '~4ODE" stands for any terminal production of the metanotion

'MOZE'. }.

(As an aid to the reader, paranotions, when not under Syntax or between

apostrophes, are printed with hyphens instead of spaces. As an additional

aid, a number of superfluous rules beginning with an asterisk have been

included. }

d) When a paranotion is said to be a "constituent" of a second paranotion,

then the first paranotion stands for any terminal production stood for by

it according to 1.1.6.c which is contained in a terminal production stood

for by the second paranotion but not contained in a terminal production

stood for by either of these paranotions contained in that second terminal

production.
{e.g. j := 7 i~ a constituent assignation (8.8) of the assignation

4 := j := 7, but not of the serial-statement (6.1.1.b)

i := j.:= 7 ; k := 2. }

e) In sections 2 up to 8 under "Semantics", a meaning is associated with

certain sequences of symbols by means of sentences in the English language,

as a series of processes (the "elaboration" of those sequences of symbols

as terminal productions of given notions), each causing a specific effect.

Any of these processes may be replaced by any process which causes the

same effect.

f) The "preelaboration" of a sequence of symbols as a terminal production

of a given notion consists of its elaboration as terminal production of the

notion which is a direct production of the given notion and of which it is

a terminal production; except as otherwise specified, the elaboration of a

sequence of symbols as terminal production of a given notion is its

preelaboration as terminal production of that notion.

{e.g. the elaboration of random as a fitted-real-cohesion is its

elaboration as a called-real-cohesion (8.2.0.I.e). }

1.1.6. continued 2

g) If something is le/t undefined or is said to be undefined, then this

~eans that it is not ~ by this Report alone, and that, for its

~e~-~-~-~a, information from outside this Report has to be taken into

ac c ount.

I. I. 7. The extended language

The extended language encompasses the strict language; i.e. a program

in the strict language, possibly subjected to a number of notational

changes by virtue of "extensions" given in Chapter 9 is a program in

the extended language and has the same meaning.

{e.g. real x, y, z means the same as (real x, real y, real z)

by 9.2.c and 9.2.d.}

.ii

certain typographical marks by virtue of "representations", given in

Section 3.1.1, and in which all commas {commas, not conlln-symbols} are

deleted, is a program in the representation language and has the same

meaning.

b) Each version of the language in which representations are used which ~

are sufficiently close to the given representations to be recognized

without further elucidation is also a representation language. A version

of the language in which notations or representations are used which are

not obviously associated with those defined here but bear a one-to-one

relationship with them, is a "publication language" or "hardware language ~

{i. e. a version of the language suited to the supposed preference of the

h~man or mechanical interpreter of the language).

{e.g., begin, bS~ and 'BEGIN' are all representations of the

begin-symbol in the representation language. }

1.2. The metaproduction rules

1.2.1. Metaproduction rules of modes

a) MDDE : NONUNYIED ; UNITED.

b) NONUNI~ED : TYPE ; PREFIX MODE.

c) TYPE : PLAIN ; structured with Fw~wDS ; PROCEDURE ; format.

d) PLAIN : IN~EAL ; boolean ; character.

e) INTHEAL : I~IEGRAL ; REAL-

f) INTEGRAL : LONGSETY integral.

g) HEAL : LONGSETY real.

h) LONGSETY : long LONGSETY ; EMPTY.

i) D~I~ : •

j) FI~DS : a FlW~,o ; F~TDS and a FI-~.o.

k) FI~D : MDDE named TAG.

l) TAG : IEIqER ; TAG LETIER ; TAG DIGIT.

m) IEPIER : letter ALPHA.

n) ALPHA : a ; b ; c ; d ; e ; f ; g ; h ; i ; J ; k ; 1 ; m ; n ; o ;

p ;q;r ;s ;t ;u ;v;w;x;y;z.

o) DIGIT : digit zero ; digit FIGURE.

p) FIGURE : one ; two ; three ; four ; five ; six ; seven ; eight ;

nine.

q) PROCHDUHE : procedure PARAMETY D~.TVETY.

r) PARAMETY : with PARAMETERS ; H~PTY.

s) PARA~ERS : a PARAM~IER ; PARAMETERS and a PARAMETER.

t) PARAMETER : MODE parameter.

u) DELIVETY : delivering a MDDE ; EMPTY.

v) PREFIX : row of ; reference to.

w) UNITED : union of MODES mode.

x) MDDES : MODE ; MODES and MODE.

{The reader may find it helpful to note that a metanotion ending

in 'ETY' always has an empty production. }

I .2.2. Metaproduction rules associated with modes

a) PRIMITIVE : integral ; real ; boolean ; character ; format.

b) ROWS : row of ; row of ROWS.

c) ROWSETY : ROWS ; EMPTY.

d) ROWWSETY : ROWSETY.

e) NONROW : TYPE ; reference to MODE ; UNITED.

f) REFETY : reference to ; ~MPTY.

g) NONEEF : TYPE ; row of MODE ; UNITED.

h) NONPROC : PLAIN ; structured with FIETDS ; :

procedure with PARSERS DELIVETY ; row of MODE ; UNITED ;

reference to NONPROC.

i) LMODE : MDDE.

j) RMODE : MODE.

k) MODETY : MODE ; ~MPTY.

i) LMODESETY : MODES and ; EMPTY.

m) RMDDESETY : and MDDES ; RMPTY.

n) LFT~DSA : FT~nS and a ; a.

o) EFTE/.DSETY : and FTET.DS ; EMPTY.

p) COMPLEX : structured with a real named letter r letter e

and a real named letter i letter m.

q) STRING : row of character.

r) BITS : row of boolean.

s) MAREr. : MODE ; label.

1.2.3. Metaproduction rules associated with phrases

a) PHRASE : declaration ; CLAUSE.

b) CLAUSE : statement ; MODE expression.

c) SOME : serial ; unitary ; CLOSED ; choice ; THELSE.

d) ~mlSE : then ; else.

e) CLOSED : closed ; collateral ; conditional.

f) COERCETY : COERCED ; ~MPTY.

g) COERCED : ~ FORCED.

h) FORCED : adapted ; adjusted ; arrayed ; called ; depressed ;

expressed ; fitted ; peeled ; united ; widened.

i) FORCETY : FORCED ; m~TY.

. ~ . M e t a p r o d u c t i o n r u l e s a s s o c i a t e d with f o r m u l a s

COERCEND : ~DETY FO~4.

FORM : ADIC formula ; cohesion ; confrontation.

ADIC : PRIORITY ; monadlc.

pRIORITY : priority NUMBRR.

NUMBER : one ; TWO ; THPaE ; FOUR ; FIVE ; SIX ; SEVEN ; EIGHT ;

NINE.

TWO : one plus one.

THE : TM3 plus one.

FOUR : THREE plus one.

FIVE : FOUR plus one.

SIX : FIVE plus one.

SEVEN : SIX plus one.

EICG~ : SEVEN plus one.

NINE : EIGHT plus one.

OPERATIVE : procedure with a RMODE paraneter DELIVETY ;

procedure with a LMODE paraneter and a ~40DE parameter DELIVETY.

-~. 5. Other metaproduction rules

VIRACT : virt1~8! ; actual.

VICTAL : VIBACC2 ; formal.

LOWPER : lower ; upper.

~T.~H : ALEPH letter f.

ANY : sign ; zero ; digit ; point ; exponent ; complex ; character ;

suppressible ANY ; replicatable ANY.

NOTION : ALPHA ; NOTION ALPHA.

SEPARATORETY : cuzu,e symbol ; go on symbol ; completer ; sequencer ;

~MPTY.

R~m~ATOR : selection ; selector ; declarator.

{Rule f implies that all notions (1.1.2.a) are productions (I .1.3.d)

the metanotion (1.1.3.a) 'NOTION'; for the use of this metauotion,

e 3.0.1.b, c, d, e, f. Rule d yields an infinite sequence; for the

e of this metanotion, see 5.5.1.6.a. }

, {"Well 'slithy' means 'lithe' al,d 'slimy'

You see it's like a portmanteau -there are

two meanings packed into one word."

Through the Looking Glass, Lewis Carroll. }

1.3• Pragmatic s (Merely corroborative detail, intended to

give artistic verisimilitude to an otherwise

bald and unconvincing narrative.

Mikado, W. S, Gilbert. }

Scattered throughout this Report are "pragmatic" remarks included between

the braces { and }. These do not form part of the definition of the

language but are intended to help the reader to understand the implications

of the definitions and to find corresponding sections.

{Some of these pragmatic remarks are examples ~ in the

representation language. In these examples, identifiers occur out of

:ontext from their defining occurrences. Unless otherwise specified, these

~ccurrences identify those in the identity-declarations of the standard-

leclarations in Chapter 10 (e.g. random from I0.3.k or pi from I0.3.a)

~r those in:

in, i, j, k, m, n ~ real a, b, x, y ~ bool p, q, overflow ~ c.har c ;

~oi~at f ~ bits t ~ string s ~ cornel w~ z

re~ real ~, yy ~ [7:n] real xT~ y7 ~ [7:m~ 7:n] real x2

[7:n~ 7:n] real y2 ~ [7:n] int i7

proc x or y = re, real expr(random < .5 1 x I yJ

proc ncos = (int iJ real : cos(2 × pi × ilnJ

proc nsin = (int iJ real : sin(2 × pi × i/nJ

~ro~ g = (real uJ real : (arctan(uJ - a + u - 7J

proc stop = expr(l:l)

exit: princeton: grenoble: kootwijk: warsaw: zandvoort: ares,erda: x :=

2• The c ~ p u t e r and the program (~"

2 .1 . 6~ jn t~

a) l ~ o ~ ~en : open, s tandard d e c l a r a t i o n s , l i b r a r y d e c l ~ a t l o ~ o p t i o n ,

partlculsr progr~, close.

b) st~d declarations : serial declaration, go on symbol.

c) library declarations : serial declaration, go on symbol.

d) partlc,,IAr progrsm : label sequence option, CLOSED statement. ~

see Chapter 10,~for collateral-statements (For ~st andard-declarat ions

see 6.3.1.b, for closed-statements see 6.4 and ~ for c°nditi°nal-statements

see 6.5. The specification of library-declarations is undefined. }

2.2. Terminology ("When I use a word," Humpty Dumpty said, in

rather a scornful tone, "it means just what

I choose it to mean - neither more nor less."

Through the Looking Glass, Lewis Carroll)

The meaning of a program is explained in terms of a hypothetical ~computer ~

which performs a set of "actions" (2.2.5), the elaboration of the

R~o~ {2.3.a). The computer deals with a set of "objects" {2.2.1) betweez

which, at any given time, certain "relationships" {2.2.2} may "hold".

2.2.1. Objects

Each object is either "external" or "internal". External objects are

"occurrences" of terminal productions (1.1.2.f) of notions. Internal
~' I . St'O,~c* ~" a f-

ob jec ts are " va lues " { 2 . 2 . 3 } ~ ~÷ " - - - - " ~.

2 .2 .2 . R e l a t i o n s h i p s

a) R e l a t i o n s h i p s i l l e i t h e r ~ " p e ~ e n t " , i . e . independent o f the

and its elaboration, or actions may cause them to hold or cease to hold.

Each relationship is either between external objects or between an

e x t e r n a l o b j e c t and an i n t e r n a l o b j e c t o r be tween i n t e r n a l o b j e c t s .

b) The relationships between external objects are:

Pro contain ~ {1.1.6.b}, ~to be a constituent of ~ {1.1.6.d} and "to

identify".

c) A given occurrence of an "identifier" (4.1) ("indication" (4.2),

"operator" (4.3)) may identify a "defining" ("indication-defining",
' t . . , ,
operator-deflnlng) occurrence of the same identifier (indication,

operator).

2.2.2. continued I

d) The relationship between an external object and an internal object

is: "to possess".

e) An external object considered as a terminal production of a given

notion may possess a value, called "the" value of the external object

when it is clear which notion is intended.

f) An identifier (operator) may possess a value ({more specifically) a

"routine" {2.2.3.4)). This relationship is caused to hold by the e laborat:

of an "identlty-declsratlon" (7.4} ("operatlon-declaration" {7.5}) and

ceases to hold upon the end of the elaboration of the smallest serial-

clause (6. I. I .b) containing that declaration.

g) An external object other than an identifier or operator {e.g. an

expression (6.0. I.c)) considered as terminal production of a given noticm

may be caused to possess a value by its elaboration as terminal productio

of that notion, and continues to possess that value until the next elabo~

if any, of the same occurrence of that external object is "initiated",

whereupon it ceases to possess that value.

h) The relationships between internal objects {values) are: "to be of

the same mode as", "to be equivalent to", "to be smaller than", "to be a

~omponent of" and "to refer to".

i) A value may be of the same mode as another value; this relationship is

permanent..

~) A value may be equivalent to another value {2.2.3.1.d, f) and a value

nay be smaller than another value (I0.2.2.a, I0.2.3.a). If one of these

relationships is defined at all for a given pair of v~ues, then either

~t does not hold, or it does hold and is permanent.

~) A given value is a component of another value if it is a "field"

E2.2.3.2), "element" {2.2.3.3.a) or "subvalue" {2.2.3.3.c) of that

~ther value or of one of its components.

L) Any "name" {2.2.3.5), except "nil" {2.2.3.5.a}, refers to one instance

)f another value. This relationship {may be caused to hold by an

'assignment" ~8.8.2.c) of that value to that name and) continues to hold

mtil another instance of a value is caused to be referred to by that

lame. The words "refers to an instance of" are often shortened in the

~equel to "refers to".

2.3. Values

Values are
i) "plain" values {2.2.3.1}, which are independent of the pro~am and

its elaboration,

il) "structured" values {2.2.3.2) or "multiple" values {2.2.3.3), which

are composed of other values in a way defined by the program,

ili) "routines" and "formats" {2.2.3.~}, which are certain sequences of

! symbols defined by the program, or

~v) names {2.2.3.5), which are created by the elaboration of the program.

2.2.3.1. Plain values

a) A plain value is either an "arithmetic" value, i.e. an integer or

a real number, or is a truth value or character.

b) An arithmetic value has a "length number", i.e. a positive integer

characterising the degree of discrimination With which the value is

kept in the computer. The number of integers (real numbers) of given

length number that can be distinguished increases with the length number

up to a certain length number, ~ the number of different lengths of

integers (real numbers) {I0.I.a, c}, after which it is constant.

c) For each pair of integers (real numbers) of the same length number,

the relationship to be smaller than is defined {I0.2.2.a, I0.2.3.a}. For

each pair of integers of the same length number, a third integer of that

leI~th number may exist, the first integer "minus" the other one

{I0.2.2.g}. Finally, for each pair of real numbers of the same length

number, three real numbers of that length number may exist, the

~l by,,) first real number minus ("times", divided the other one {I0.2.3.g, i, m}

these real numbers are obtained "in the sense of numerical analysis", i.e.

by performing the operations known in mathematics by these terms on real

~s~e~ u ~ ~ d ers which ~aay deviate slightly from the given ones {; this deviation

this Report}.

d) Each integer of given length number is equivalent to a real number

of that length number, Also, each integer (real number) of given length

number is equivalent to an integer (real number) whose length number

is greater by one. These equivalences permit the "w~dening" {8.2.5} of

i an integer into a real number and the increase of the length number of

an integral or real number. The inverse transformations are only

2.2.3.1. continued

possible on those real numbers which are equivalent to an integer of

the same length number or on those values which are equivalent to

a value of smaller length number.

e) A truth value is either "true" or "false".

f) Each character has an "integral equivalent" {I0.I.h}, i.e. a

nonnegative integer of length number one; this relationship is defined

only in so far that different characters have different integral equiv

2.2.3.2. Structured values (Yea, from the table of ~ memory

I'ii wipe away all trivial fond rec,

Hamlet, William Shakes~,

A structured value is composed of a number of other values, its fields,

in a given order, each of which.is "selected" (8.6.2. Step 2) by a

specific field-selector (7.1.1.~}.

2.2.3.3. Multiple values

a) A multiple value is composed of a "descriptor" and a number of other

values, its elements, each of which is selected (8.4.2. Step 7} by a

specific integer, its "index".

b) The descriptor consists of an "offset", c, and some number, n -> O, of

"quintuples" (li, ui, di, si, ti) of integers, i = I, ..., n; i i i s ~

the i-th "lower bound", u i the i-th "upper bound", d i the i-th "stride",

s i the i-th "lower state" and t i the i-th "upper state". If any i i > ui,

then the number of elements in the multiple value is zero; otherwise, it i

(U 1 - 1 1 + 11, x . . . x (u n _ in + l~ck.p.#l..¢.lrf..rr ,.,k,.k
The descriptor describes" ~z-~eme~-/~here exists an n-tuple

(r I, ..., r n) of integers satisfying i i ~ r i _< u i for all i = I, .. , n

such that the element is selected by

C + (r I -1i) x d I + ... + (r n _ in) x dn.

{In[a given ~stance of a multi~e value,~ state ~ich is~(1) i~dicat

that t~e given~ue can/!cannot)ke "supersEded" (8~.2.a)~an i~tance

~f a ~itiple ~ue in ~ich the~ound corr~spondin~to the ~tate ~ffers

from ~hat in t~e given ~lue. } I ~ J /

Ek. t,,,,,,a 'o. , .spo.a, ' , .)~-o e~,.I- s/-=('.,. , l+~.s F,~o~ ~k=L i,,, fk,+

2.2.3-3. continued

c) A subvalue of a given multiple value is a multiple value referred to

by the value of a slice (8.4} the value of whose constituent whole

{8,~. I .a, c} refers to the given multiple value.

2.2.3.~. Routines and formats

A routine (format) is a sequence of symbols which is the same as some

closed-clause {6.4.1.a} (format-denotatlon (5.5})-

2.2.3.5- Names

a) There is one name, ~e~.la~-nil, whose "scope" (2.2.4.2) is the program

and which does not refer to any value. Any other name is created by the
S

elaboration of an act~l-declarer {7.1.2.c. Step~, and refers to precisely

one instance of a value).

b) If a given name refers to a structured value (2.2.3.2), then to each of

its fields there refers a name uniquely determined by the given name and

the field-Selector selecting that field, and whose scope is that of the

given name.

c) I f a g i v e n name r e f e r s t o a g i v e n m u l t i p l e v a l u e { 2 . 2 . 3 . 3 } , t h e n t o

each e l e m e n t (each m u l t i p l e v a l u e whose e l e m e n t s a r e a p r o p e r s u b s e t o f t h e

e l e m e n t s) o f t h e g i v e n m u l t i p l e v a l u e t h e r e r e f e r s a ~ame u n i q u e l y determine~

by t h e g i v e n name and t h e i n d e x o f t h a t e l e m e n t (and t h a t s u b s e t) , and

whose scope i s t h a t o f t h e g i v e n name.

2.2.4. Modes and scopes

2.2.4.1. Modes

a) Each instance (2.2.1) of a value is of one specific mode {1.1.6.c.vi}

which is a terminal production of 'NONUNI~ED' {1.2.1.b}; furthermore,

all instances of a given value other than nil {2.2.3.5.a} are of one same

mode.

b) The mode of a truth value (character, format) is 'boolean' ('character',

' format').

c) The mode of an integer (a real number) of length number n is (n - I)

times 'long' followed by 'inte~al' (by 'real').

2.2.4. I. continued

d) The mode of a structured value is 'structured with' followed by one

or more "portrayals" separated by 'and', one corresponding to each fieX~

taken in the same order, each portrayal being 'a' followed by a mode

followed by 'named' followed by the terminal production of 'TAG' {I ~2,1. F

whose terminal production {field-selector} selects {2.2.B.2} that field.

e) The mode of a multiple value is a terminal production of 'NONROW'

{1.2.2. e} preceded by as many times 'row of' as there are quintuples in

the descriptor of that value.

f) The mode of a routine is a terminal production of 'PROCEDURE' {1.2.1.q

g) The mode of a name is 'reference to' followed by another mode. {See

7.1.2.c. Step 8. }

h) A given mode is "adjusted (united) from" a second mode if the notion

consisting of that second mode followed by 'cohesion' is a production of

the notion consisting of 'adjusted' ('united') followed by the given mode

followed by 'cohesion' {see 8.2}.

{e.g. The mode specified by real is adjusted from the mode specified

by re~ real, and that specified by union(int, real) is united from those

specified by int and real. } •

~ A ~ e ~ 2 e ~ d toga s~d motif ~h ms~s ~ a d j ~ d ~

on~sam~mg~e {s~e 4.V. 2. a ~d 4.4.~.c.)/

{e.g. The modes specified by real, rex real, ~ion(int, real) and

=~real are s~ll relate_d_ to one another since all are ad.iusted from 'real

j) A given mode is "structured from" a second mode if it begins with

'structured with' and the mode between 'a' and 'named' in one of its

portrayals {d} is or is structured from that second mode.

{e.g. In the context of the declarations

struct a = (aa, bb) and

struct b = (~a, ref real r) ,

the mode specified by a is structured from those specified by a and ~,

whereas the mode specified by ~ is structured from that specified by a,

and hence also from itself. }

lWO~ S

2.4.2. Scopes, inner and outer scopes

i Each value has one specific scope. Each instance of a value has,

)reover, one specific "inner scope" and "outer scope".

i The scope of a plain value is the pro~am,

tat of a structured (multiple) value is the smallest of the scopes of

its fields (elements),

mat of a routine or format possessed by a given denotation {5.4, 5.5}

is the smallest range {4.1.1.e} containing a defining {4.1.2.a}

(indication-defining { 4.2.2. a}, operator-defining { 4. B. 2. a)) occurrence

of an identifier (indication, operator), if any, applied but not defined

• (indication-applied but not indication-defined, operator-applied but not

operator-defined) within that denotation, and, otherwise, the program,

and

.hat of a name is some {8.5.2.c} range.

:) The inner (outer) scope of~a value possessed by an external object

~ose value can have only one scope is that scope.

[) The inner (outer) scope of ha value possessed by an external object

~hose value can have one of a number of inner (outer) scopes, is the -t

~mallest (largest) of those inner (outer) scopes.

-~.2.5. Actions {Suit the action to the word~

the w6rd to the action.

Hamlet, William Shakespeare

~n action is ~ "elementary", "serial" or !'collateral".

serial action consists of actions which take place one after the

other. A collateral action consists of actions merged in time; i.e.

it consists of the elementary actions which make up those actions

provided only that each elementary action of each of those actions which

would take place before another elementary action of the ~same action

when not merged with the other actions, also takes place before it when

merged. I~ ~

(What actions, if any, are elementary isLundefined, except as

provided in 6.4.2. c. }

haven't been invented S ~ t ~ ~

Through the Looking Glass, Lewis ~roll. }

) The elaboration of a program is the elaboration of the closed-

tatement {6.4.1.a} consisting of the same sequence of symbols.

In this Report, the Syntax says which sequences of symbols are programs,

~d the Semantics which actions are performed by the computer when

[aborating a progrsm. Both Syntax and Semantics are recursive.)

) In ALGOL 68, a specific notation for external 0bjects is used which,

~gether with its recursive definition, makes it possible to handle and

distinguish between arbitrarily long sequences of symbols, to distinguish

:tween arbitrarily many different values of a given mode (except 'boolean')

Ld to distinguish between arbitrarily many modes, which allows arbitrarily

my objects to occur in the computer and which allows the elaboration

a progrsm to involve an arbitrarily large, not necessarily finite,
mber of actions.

is is not meant to imply that the notation of the objects in the

mputer is that used in ALGOL 68 nor that it has the same possibilities.

is, on the contrary, not assumed that the computer can handle

bitrary amounts of presented information. It is not assumed that these

notations are the same or even that a one-to-one correspondence

[sts between them; in fact, the set of different notations of objects

a given category may be finite. It is not assumed that th~ n ~f
.

t~ ~equiremenu~ uf ~ 6i,~.. ~iro~ca~h.m~a= that the speed of the

~uter is sufficient to elaborate a given progr~n within a prescribed

A model of the hypothetical computer, using a physical machine, is

d to be an "implementation" of ALGOL 68, if it does not restrict the

of the language in other respecta than those mentioned above.

thermore, if a language is defined whose particular-programs are

particular-programs of ALGOL 68 and have the same meaning, then

language is called a "sublanguage" of ALGOL 68. A model is said

~e an implementation of a sublanguage if it does not restrict the

of the sublanguage in other respects than those mentioned above.

{A sequence of symbols which is not a pl~ogI~n but can be turned

one by a certain number of deletions or insertions of symbols and',

a smaller number could be regarded as a pl~o~sm with that number o:

syntactical errors. Any program that can be obtained by performing

number of deletions or insertions may be called a "possibly intend,

pro~n. Whether a pro~sm or one of the possibly intended has ~ ~ ~ ~or ~ ~ ~ ~t- ~& h~v~ p r o ~ a ~

....... ± &c. ~b~d=S L~ S=o~4~e is a matter wh~
Outside of this Report. }

{In an implementation, the partlcular-pro~sm may be "compiled",

translated into an "object program'~ in the code of the ph~

machine. Under circumstances, it may be advantageous to compile pax

the partlcular-program independently, e.g. parts which are com~ n t

several partlcular-progranB.

If such a part contains occurrences of identifiers (indications, op

whose defining (indication-defining, operator-defining) occurrences

(Chapter 4) are not contained in that part, then compilation into a

efficient object program may be assured by preceding the part by a

of formal-parsmeters (5.4.1.e) (mode-declaratlons (7.2) or priority

declarations (7.3), captions (7.5. I. b)) containing those defining

(indication-defining, operator-defining) occurrences.}

3.0. ~ynt ax

3.0.1. Introduction

a)e basic token : letter token ; denotation token ; action token ;

declaration token ; syntactic token ; sequencing token ;

hip token ; extra token ; quote symbol. ; cg~ra~nt symbol}

b) NOTION option : NOTION ; m,wi,. - ~.____./~,c~o,,

c) chain of NOTIONs separated by SEPARATORETYs : NOTION ;

NOTION, SEPARATORETY, chain of NOTIONs separated by SEPARATOEETYs.

NOTION list : chain of NOTIONs separated by comma symbols.

NOTION sequence : chain of NOTIONs separated by ~MFTYs.

NOTION pack : open symbol, NOTION, close symbol.

d)
e)

z)

{ Examples :

a) ~ ; o ; + ; ~ n t ; ~ ; • ; nil ; f o r ;

~) o ; ;

c) O, l , ~ ;

d) 0 ; O, 7, 2, ;

e) 0 ; 000 ;

f) (~, ~, ~) }

-- ~; ~iE~ ~ ' ?..
" ; c ; f .) .~

/

(For letter-tokens see 3.0.2, for denotation-tokens see 3.0.3, for

action-tokens see 3.0.~, for declaration-tokens see 3.0.5, for syntactic-

tokens see 3.0.6, for sequencing-tokens see 3.0.7, for hip-tokens see

3.0.8S~ for extra-tokens see 3.0.9~ ~ ~ q{'h.e,---~o~.e-{~c~5 a,~

3.0.2. Letter tokens

a) letter token : L~ITER.

b) LEITER : LETTER symbol.

{ Exam9 les : s~epl

a) U ; ~ (see 1 . I . ~ . ~) }

{Letter-tokens are constituents of ident i f ie rs (4.1.1.a), f i e l d -

selectors (7 • I . I . i), format-denmtations (5. ~5) and row-of-cbaracter-

denotations (~.3). }

a) denotation token : number token ; true symbol ; false symbol ;

formatter symbol ; expression symbol ; parameter symbol ; flipflop ;

c(xmra symbol ; space symbol.

b) number token : digit token ; point symbol ;

times ten to the power symbol.

c) digit token : DIGIT.

d) DIGIT : DIGIT symbol.

e) flipflop : flip symbol ; flop symbol.

{Examples :

a) 7 ; true ; ~alse ; ~ ; ezpr ; : ; .~ ; , ;. ;

t) 7 ; ; ~ 0 ;
c) / ;

e) ! ;0 }

{Denotation-tokens are constituents of denotations (Chapter 5). Some

denotation-tokens may, by themselves, be denotations, e.g. the dlgit-token

l, whereas others, e.g. the expresslon-symbol, serve only to construct

denotations. }

3.0.4. Action tokens

a) action token :

operator token ; equals symbol ; value of symbol ; confrontation token.

b) operator token : or symbol ; and symbol ; not symbol ;

differs from symbol ; is less than symbol ; is at most symbol ;

is at least symbol ; is greater than symbol ; plusmlnus ;

times symbol ; over symbol ; quotient symbol ; modulo symbol ;

absolute value of symbol ; lengthen symbol ; shorten symbol ;

round symbol ; sign symbol ; entler symbol ; odd symbol ;

representation symbol ; real part of symbol ;

imaginary part of symbol ; conjugate symbol ; binal symbol ;

to the power symbol ; minus and becomes symbol ; plus and becomes symbol

times and becomes symbol ; over and becomes symbol ;

modulo and becomes symbol ; prus and becc~s symbol ; up symbol ;

down symbol.

c) plusnllnus : plus s~Tnbol ; minus symbol.

d) confrontation token : becomes symbol ; conforms to symbol ;

conforms to and becomes "symbol ; is symbol ; is not symbol.

3. O.h. continued

{Examples :

a) + ; = ; val • := •

b) v ; ^ ; ~ ; ; _< ; > ; > ; + ; x ; / ; ÷ ; ÷ : ; abs ; l e n s ;

short ; round ; sign ; entier ; odd ; repr ; ~ ; i_.m ; tong ; bin ;

$; m i n u s ; p l u s ; t i m e s ; o v e r ; modb ; p r o s ; u ~ ; down ;

c)+;-;

d) := ; :: ; ::= ; :=: ; :~: }

{Operator-tokens are constituents of formulas (8.1). An operator-

token may be caused to possess an operation by the elaboration of an

operatlon-declaratlon (7.5).

Confrontation-tokens are constituents of confrontations (8.0.1 .~). }

3.0.5. Declaration tokens

a) declaration token : PRIMITIVE symbol ; long symbol ;

reference to symbol ; procedure symbol ; structure symbol ;

union of symbol ; local symbol ; complex s~nbol ; bits symbol ;

string sym~l ; mode symbol ; priority symbol ; operation symbol.

{ Example s :

a) int ; long ; re~ ; proc ; struct ; union ; loc ;

compl ; bits ; string ; mode ; priority ; o~ }

{Declaration-tokens are constituents of declarers (7.1), which

specify modes (2.2.4), or of declarations (7.2, 3, h, 5). }

3.0.6. Syntactic token~y.~d}~o~i" sy.&f~_z~sy~b0 ~ ; e~ s~-~ol

a) syntactic token : opeq;_ close~ementary symbol ; parallel symbol

sub symbol ; bus symbol ; up to symbol ; at symbol ; if symbol ;

THEr.qE symbol ; fl symbol ; of symbol ; label symbol.

eg't~fLJ~J~-:--LCTCLC zym_bol- ; end z~.,--bol ; crd s~.~_bsl, 9AG;

{ .Example s i ,

a) (; ~ ; ~ e l e m ; p a r ; [;] ; : ; : ; ~ ; t h e n ; ~ ; q ~ ; : g

- ~) ~,~ ... ~ , ~ : ~ }

{Syntactic-tokens separate external objects or group them together. }

3- 0.7- Sequencing tokens

a) sequencing token : go on symbol ; ccm~letion symbol ; go to symbol.

{ Examples:

a) ; ; • ; go to }

{Sequenclng-tokens are constituents of phrases, in which they

specify the order of elaboration (6.1.2.c). }

3.0.8. Hip tokens

a) hip token : sklp symbol ; nll symbol.

{ Example s:

a) skip ; nil }

{Hip-tokens function a s skips (6.2.1 .e) and nlhils (8.3.1 .e). }

3.0.9. Extra tokens and ccmments

a) extra token : for symbol ; frcm symbol ; by symbol ; to symbol ;

while symbol ; do symbol ; then If symbol ; else If symbol ;

case symbol ; in symbol ; esac symbol ; plus I times symbol.

b) c~ment : cerement symbol, comment Item sequence option, comment symbol.

c) cerement Item : character token ; ~ - ~ - o t h e r conment item.

d) character token : letter token ; r~nber token ; plus i times symbol ;

open symbol ; close symbol ; space symbol ; comma%ymbol.

{Examples :

a) ~ ; p ~ . ; b~ ; t o ; whiZe ; ~_ ; the t ; e~s I ; oase ; in ; esao ~: i ;

b) o with respeot to o ;

c) w ; " - k ? ;

d) a ; 7 ; . ~ ; (;) ; . : ; , }

{For other-cc~ment-lte~s see I. I. 5. Step 4. }

{Extra-tokens and cum ents may occur in constructions which, by virtue

of the extensions of Chapter 9, stand for constructions in which no

extra-tokens or cerements occur. Thus, a progr~ containing an extra-teken

or a cerement is necessarily a progrs~n in the extended language, but ~_

~e-vzrz= dc~ nct ~ ~=

3. I. Symbols

3. I. I. Representations

a) Letter tokens

symbol represent at ion

letter a symbol a

letter b symbol • b

letter c symbol o

letter d symbol d

letter e symbol e

letter f symbol f

letter g symbol g

letter h symbol h

letter i symbol i

letter J symbol j

letter k syn~ol k

letter i symbol l

letter m symbol m

b) Denota t ion t o k e n s

symbol

digit

digit

digit

digit

digit

digit

digit

digit

digit

digit

point

times

symbol

letter n symbol

letter o symbol

letter p symbol

letter q symbol

letter r symbol

letter s symbol

letter t symbol

letter u symbol

letter v symbol

letter w symbol

letter x symbol

letter y symbol

letter z symbol

representation

zero symbol 0

one symbol I

two symbol 2

three symbol 3

four symbol 4

five symbol

six symbol 6

seven symbol ?

eight symbol 8

nlne symbol 8

symbol

ten to the power symbol I 0 e

r e p r e s e n t a t i o n

n

o

P

q

r

8

t

u

x

z

3 • I • I • c o n t i n u e d 1

symbol

t r u e symbol

f a l s e symbol

formatter symbol

expression symbol

parsmet er symbol

flip symbol

flop symbol

comma symbol

space symbol

c) Action tokens

symbol

or symbol

and symbol

not symbol

eq,,A1 s symbol

differs frem symbol

is less than symbol

is at most symbol

is at least symbol

is greater than symbol

plus symbol

minus symbol

times symbol

over symbol

quotient symbol

modulo symbol

absolute value of symbol

lengthen symbol

shorten symbol

round symbol

sign symbol

entler symbol

odd symbol

r e p r e s e n t a t i o n

true

yale
£
e r r

: e r r

7

0

r e p r e s e n t a t i o n

v O r

^

-~ not

< I t / ~

+

u

x •

/
quotient

~ s

. • s h o r t

entier

odd

3.1.1- continued 2

symbol

representation symbol

real part of symbol

imaginary part of symbol

conjugate symbol

birml symbol

to the power symbol

minus and becomes symbol

plus and becomes symbol

times and becomes symbol

over and becomes symbol

modulo and becomes symbol

prus and becemes symbol

up symbol

down symbol

value of symbol

becomes symbol

conforms to symbol

conforms to and becomes symbol

is symbol

is not symbol

d) Declaration tokens

symbol

integral symbol

real symbol

boolean symbol

character symbol

format symbol

long symbol

reference to symbol

procedure symbol

structure symbol

union of symbol

local symbol

representation

re~

Me

im

bin

$ p~r e:

nr~r~s

times

oven

modb

prus

u~

down

val

:=

: : ot

: := ctb

:= : is

is not isnot

representation

int
i .

bool

char

font

long

ref

proq

struct

union

loc

3. I. I. continued 3

symbol

complex symbol

bits symbol

string symbol

mode symbol

priority symbol

operation symbol

e) Syntactic tokens

symbol

open symbol

begin symbol

close symbol

end symbol

elementary symbol

parallel symbol

sub symbol

bus symbol

up to symbol

at symbol

If symbol

then symbol

else symbol

fi symbol

of symbol

label symbol

f) Sequencing tokens

symbol

go on symbol

couplet ion symbol

go to symbol

r e p r e s e n t a t i o n

oc,.pl
b i t s

strin~
mode
priority

9.2

r e p r e s e n t a t i o n

(

benin
)

end

e lem

par

[(

])

: at

i then

i else

representation

J

go to goto

3. I. I • continued

g) Hip tokens

symbol representation

skip symbol skip

nil symbol nil

h) Extra tokens

symbol repre aentat ion

for symbol ~or

from symbol ,from
by symbol b~

to symbol to

while symbol while

do symbol d_.o

then if symbol I :

else If symbol I : els~

case symbol (o a s e

in symbol I in

esac symbol) esao

plus i times symbol ~_ _~

i) Special tokens

symbol repre sent at ion

quote symbol "

comment symbol c comment

3.1.2. Remarks

a)Where more than one representation of a-symb01 is given, any one

of them may be chosen.

{However, discretion should be exercised, since the text

(a > b then b] a,~.,

though acceptable to an automaton, would be more intelligible to

a human in either of the two representations

or

i~ a > b then b else a ~ . }

3.1.2. continued

b) A representation which is a sequence of underlined or bold-faced

marks or a sequence of marks between apostrophes is different from the

sequence of those marks when not underlined, in bold face or between

apostrophes.

c) Repres~ntation~ of qther letter-tokens {1 .I .4. Step 2}, other-~0~-

Indlcations~{ I. 1 . 5 . Step 3}, other-cac,~ent-items and other-strlng-iten~

{1.1.5. Step 4} may be added, provided that no ~letter-tokeng {3.0.2},
._-__ ~ ~ . ~ _ -~

d) The fact that the representations of the letter-tokens given above

are usually spoken of as small letters is not meant to imply that the
ap

so-called corresponding c4~ital letters could not serve equally well

as representations. On the other hand, if both a smell letter and the

corresponding capital letter occur, then one of them is the representation

of an other letter-token {I. I.h. Step 2}.

{For certain different symbols, one same representation is given,

e.g. for the parameter-symbol, up-to-symbol, at-symbol and label-symbol, $
the representation ":" is given. It follows uniquely from the Syntax

which of these four symbols is represented by an occurrence of ":"

outside ccmnents and row-of-chsracter-denotatlons. Also, some of the

given representations appear to be "composite"; e.g. the representation

":=" of the becunes-symbol appears to consist of ":", which looks like

the representation ":" of the at-symbol, etc., and the representation
.--,!

"-" of the equals-symbol. It follows from the Syntax that " or even

":=" can occur outside comments and row-of-character-denotatlons as

representation of the becomes-symbol only (since "=" cannot occur as

representation of a monadic-operator). Similarly, the other given

composite representations do not cause ambiguity. }

~. Identification and context conditions

4. I. Identifiers

4.1.1. Syntax

a)e identifier : MABEL identifier.

b) MABEL identifier : TAG.

c) TAG LETIER : TAG, LEqTER.

d) TAG DIGIT : TAG, DIGIT.

e)+ range : C0~CETY serial CLAUSE; PROCEDURE den~tatlon.

{ Example s:

b) x ; ~a~ ; x7 ; amsterdam }

{Rule b, together with 1.2.2.~ and 1.2.1.1 gives rise to an infinity

of production rules of the strict language, one for each pair of terminal

productions of 'MABEL' and 'TAG'. For example,

'real identifier : letter a letter b.'

is one such production rule. From rule c and 3.0.2.b, one obtains

'letter a letter b : letter a, letter b. ',

'letter a : letter a symbol.' and

'letter b : letter b symbol. ',

yielding

'letter a symbol, letter b symbol'

as a terminal production of 'real identifier'.

See also 7.I.l.g and 8.6 for additional insight into the function of

rules c and d. }

4. I. 2. Identification of identifiers

a) A given occurrence of an identifier defines if

i) it follows a formal-declarer {5.4.1.e~},

ii) within some range, it is the textually first occurrence of that

identifier in a constituent flexible-lower-bound or flexlble-upper-

bound {7. I.1.u} of that range, or

iii) it is contained in a label {6.1.1.g};
II' " II " II otherwise, it is applled .

4.1.2. continued

b) If a given occurrence of an identifier is applied, then it may

identify a defining occurrence found by the following steps:

Step I : The given occurrence is called the "hume" and Step 2 is taken ;

Step 2: If there exists a smallest range containing the home, then this

range, with the exclusion of all ranges contained within it, is called

the home and Step 3 is taken (; otherwise, there is no defining oceurrenc

which the given occurrence identifies} ;

Step 3: If the home contains a defining occurrence of the identifier,

then the given occurrence identifies it; otherwise, Step 2 is taken.

{In the closed-expression (bits x(TD?) ~ abs x[23 = 0), the first

occurrence of x is a defining occurrence of a reference-to-row-of-

booles/l-ldentlfler. The second occurrence of x identifies the first and,

in order to satisfy the identification condition (4.4.1), is also a

re ference-to-row-o f-boolean-ldent i fier. }

{Identifiers have no inherent meaning. The defining occurrence of an

identifier either is in a label (6. I. I .g) or is made to possess a value

(2.2.3) by the elaboration of an identlty-declaration (7.4). }

h.2. Indications

4.2.1. Syntax

a)e indication : MODE mode indication ; ADIC indication.

b) MODE mode indication : mode star~d ; other~indication.

c) mode standard : string symbol ;

long symbol sequence option, complex symbol ;

long symbol sequence option, blts symbol.

d). priority indication : PRIORITY indication.

e) PRIORITY indication : long symbol sequence option, operator token ;
o iI~ ~ T l t " e r

long symbol sequence option, equals symbol ; other~Indlcation.

f) monadic indication : long symbol sequence option, operator token ;
0 I~ rOtE0 ~

other ~indicatlon.

g)Q adic indication : ADIC indication.

2.1. continued

{Examples :

string ; lone compl ; bite ;

+ ; = ; ? ; ,~
) •

{For o t h e r ~ c a t i o n s ~ s e e 1.1.5. Step 3 and for operator- tokens
e 3.0.~.b. }

2.2. Identification of indications

A given occurrence of an indication indication-defines if it precedes

e constituent equals-symbol in a mode-declaratlon {7.2} or priority-

~laration {7.3}; otherwise it is "indication-applied".

If a given occurrence of an indication is indication-applied, then it

r identify an indication-defining occurrence of the indication found

[ng the steps of ~.I.2.b with Step 3 replaced by:

;ep 3: If the home contains an indication-defining occurrence of the

~dlcation, then the given occurrence identifies it; otherwise,

• ep 2 is taken.".

{Indications have no inherent meaning. The indication-defining

urrence of an indication establishes that indication as a terminal

duction of 'MODE mode indication' (7.2) or 'PRIORITY indication'

3). Monadlc-indications have no indication-defining occurrence. }

• Operators

• I. Syntax

operator : procedure with PARAMETERS ADIC operator.

procedure with PARAS DELIVETY ADIC operator :

procedure with PARAMETERS ADIC operator.

procedure with a IRDEE parameter and a RMOEE parameter PRIORITY operator
PRIORITY indication.

ProCedure with a RMOEE parameter menadic operator : monadic indication.

priority operator : procedure with PARAMEIEES PRIORITY operator.

Examples :

be }

~.3.2. Identification of operators

a) A given occurrence of an operator operator-defines if it precedes the 64=~

constituent eq!~R~s-symbol in an operation-declaration {7.5}; otherwise,

it is "operator-applied".

b) If a given occurrence of an oper-ator is operator-applied, then it

may identify an operator-defining occurrence of the operator found using

the steps of 4.1.2.b, with Step 3 replaced by:

"Step 3: If the home contains an operator-defining occurrence of an

operator which is the same adic-indlcation as the given occurrence,

and which {in view of the identification condition (4.4.1)} could be

an operator-defining occurrence of that operator, then the given

occurrence identifies that operator-defining occurrence of the operator;

otherwise, Step 2 is taken.".

{Operators have no inherent meaning. The operator-defining occurrence

of an operator is made to possess a routine (2.2.3.4) by the elaboration

of an operation-declaration (7- 5).

A given occurrence of an indication may be both a priority-indication

and a priority-operator. As a priority-lndication, it identifies its

indication-defining occurrence. As a priority-operator, it may identify

an operator-definin~ occurrence, which possesses a routine. Since the

occurrence o f an ~ n d l c a t i o n ~ a n o p e r a t i o n - d e c l a r a t i o n xs an l n a x c a ~ l o n -

application and an operator-definition (but not an operator-application),

it follows that the set of those occurrences which identify a given prlorit

operator is a subset of those occurrences which identify the same priority-

Indication.

In the closed-statement

been real z , y (7 . 5) ; priority rain = 6 ;

o~ min = (real. a, b) real : (a > b ~ b] a) ;

z := ~ rain pi / 2 end ,

the first occurrence of m/n is an indication-defining occurrence of a

priority-SIX-Indlcation. The second occurrence mln is indication-applied

and identifies the first occurrence, whereas, at the same text,,~l position~

1 .
• ..~n is also operator-defined as a [prrr]-priority-SIX-operator and hence

is also a /prr]-priority-SIX-operator (~.3.1.b; i.e. ignoring the mode of

2. continued

~e, if any, which it delivers), where [~r] stands for procedure-

~_a_real-parameter-and-a-real-parameter, and [prrr] for /prrS-dellverlng-

~al. The third occurrence of m/n is indication-applied and, as such,

Ltifies the first occurrence, whereas, at the same textual position,

is also operator-applied, and, as such, identifies the second occurrence

makes it (in view of the identification condition, 4.4.1) a [prr]-

,rity-SIX-operator and hence, also because of the identification

Lition, a /prrr]-priority-SIX-operator. This identification of the

~rity-operator is made because

rain occurs in an operation-declaration,

could be an adJusted-real-priority-SIX-operanJd,

I pi/2 could be an adJusted-real-pri0rity-SEVEN-operand

(since it is a priority-SEVEN-formula),

m/n is a /prr]-priority-SIX-operator, and

this combination of possibilities satisfies the identification

condition.

i this identification of the prlority-operator accomplished, we know that

3 an adJusted-real-prlority-SIX-opersnd and that p//~ is an adjusted-

L-priority-SEVEN-opersnd. If the identification condition were not

isfied, then the search for another defining occurrence would be

~inued in the same range, or failing that, in a surrounding rathe. }

{Though this be madness, yet

there is method in't.

Hamlet, William Shakespeare. }

Context conditions

~roper" program is any program satisfying the context conditions;

~eaningful" program is a proper program whose elaboration is defined

~his Report. Whether all progr~s, only proper programs, or only

~ingful programs are "ALGOL~68 programs ~ is a matter for individual

~e. {If one chooses only proper programs, then he must consider the

~ext conditions as syntax which is not written as production rules. }

4.4.1. The identification condition

In a proper program, each applied occurrence of an identifier (each

indication-applied occurrence of an indication, each operator-applied

occurrence of an operator) which is a terminal production of one or

more notions ending with 'identifier' ('indication', operator') is a

terminal production of all those same notions at the defining (ind/cation-

defining, operator-defining) occurrence, if any, of that identifier

(indication, operator). {See the remarks after 4.1.2 and 4.3.2. }

4. h. 2. The mode conditions

a) No proper program contains a declarer {7.1} specifying a mode united

from {2.2.4.1.h) two modes related {2.2.4.1 .i} to one another, or from

a mode d~ ~,~ ~,~ck ~" ~0~ i5 ~j~st*~,
{e.g., neither the declarer union(reals ref real.)

nor the mode-declaration (7.2) mode a = union(reals proc a)

is contained in any proper program. }

b) No proper program contains a declarer specifying a mode structured

from {2.2.4.1.j} itself.

{e.g., no proper program contains the mode-declaratlon

struct a = (_~j real r). }

c) No proper program contains a declarer the constituent field-selectors

{7.1.1.h} of two of whose constituent field-declarators {7.1.1.g} are the

same sequence of symbols.

{e.g., the declarer atruct(int i, bool i)

is not contained in any proper program, but

struct(int i, struct(int i, bool j) j) may be. }

~.4.3. The uniqueness conditions

a) A "reach" is a range {4.1.1.e} with the exclusion of all its constitue

ranges.

b) A given mode-indlcation {4.2.1.b} is "connected to" a second mode-

indication if the actn~]-declarer following the eq~8]s-symbol following t

indication-defining occurrence of the given indication ends with an

indication which identifies the indication-defining occurrence of the se¢

indicatlon, or, otherwise is connected to the second indication.

{e.g., in the context of

mode a = r e d ~ .; mode b = p r o c .~ ,

the indication .q is connected to b and hence to o.)

4.4.3. continued

c) No proper program contains a reach containing two defining occurrences

of a given identifier nor two indication-defining occurrences of a given

indication.

{e.g., none of the closed-expresslons (6.4.1.a)

(real z ~ real x ~ sin(3.14)), L

(real y ; int y ~ sin($. 74)), ~i'i

(real p ~ p : ~oto p ; sin(3.74)),

(mode _a = real ~ mode a = boos ; sin($. 74)) and

Z b ' " ~ (~ ; priority b~ = 6 ; sin(3.74))

is contained in a proper program. }

d) No proper program contains a reach containing two operatlon-declaratior~

whose first constituent operators are the same indication and all

corresponding constituent v ~ t u a l - ~ , 4 ~ - ~ of whose first

constituent balls {7 I I ~ : + . A I ~ ~ , - :~

{e.g. nei ther the closed-expressio ~ ~ , , f = ~ , a ~o ~., =~9~h~ {=~.1 ;J
(~ max = (int a, int b) int : (a > b I a I b) ;

o~ max = (int a, int b) int : (a > b I a I b) ~ sin(3.74))

nor (o~max = (int a, re~int b) int : (a > b a I b) $

~ ~a4~ : (re[in~ a~ int b) int : (a > b a I b) ~ sin(3.;4))

is contained in any proper program, but

(o~ ~ax = (int a, i nt b) int : (a ~ b I a b)

o~ max = (real a, real b) real : (a > b I a I b) ; sin(3.14))

may be. }

e) No proper program contains a mode-indication which is connected to

{4.4.3.b} itself.

{e.g., neither of the mode-declaratlons

mode a = a and

mode b = re~ b nor the pair of declarations

mode c = ref _d ; mode d = proc _c

is contained in any proper program.~

f) No proper program contains an applied occurrence of an identifier

(indication-applied occurrence of a mode-indicatlon or priority-indication,

operator-applied occurrence of an operator) which does not identify a

defining (an indication-defining, an operator-defining) occurrence.

5. Denotations

5.0.1. Syntax

a)~ denotation : PLAIN denotation ; BITS denotation ;STRINGdenotatlon ;

PROCEDURE denotation ; format denotation.

{Examples:
a) ~.74 ; 70__ ! ; '~ol._report" ; (boos a, b) boos : (a I b I false.) ; f6d Z

{For plaln-denotations see 5.1, for row-of-boolean-denotations see 5.2,

for row_of-character-denotations see 5.3, for routine-denotatlons see 5.4

and for format-denotations see 5.5. }

5.0.2. Semantics

a) A denotation possesses a value; a given denotation always possesses the

same value ; its elaboration involves no action.

b) The mode of the value possessed by a given denotation is obtained by

deleting 'denotation' from that direct production of the notion 'denotatlor

of which the given denotation is a terminal production. (e.g. The vaYhe of

'%Igol...report", which is a production of 'row of character denotation',

is of themode 'row of character'. }

5.1. Plain denotations

5.1.0.1. Syntax

a), plain denotation : PLAIN denotation.

b) long INIREAL denotation : long symbol, INTREAL denotation.

{Examples :

a) 4096 ; 3 . 7 4 ; ~'u.._9~ ;

b) loW, 4 0 9 6 ; ~on~ ~on~ 3 . 7 4 7 5 8 2 6 S Z 5 8 9 7 9 3 }

{For in tegra l -denota t lons see 5.1 .1 , fo r rea l -denota t ions see 5.1.2

and for boolean-denotatlons see 5.1.3. }

5. I. 0.2. Semantics

a) A plain-denotation possesses a plainvalue {2.2.3.1 }, but plain values

possessed by different plain-denotations are not necessarily different.

5. I .0.2. continued

b) The value of a denotation consisting of a number {possibly zero) of

long-symbols followed by an integral-denotatlon (real-denotation) is the

"a priori" value of that integral-denotation (real-denotation) provided

that it does not exceed the largest integer {I0.I.b} (largest real number

{I0.1.d}) of length number one more than that number of long-symbols

{; otherwise, the value is undefined).

5- 1.1 . Integral denotations

5.1.1.1. Syntax

a) integral denotation : digit zero ; natural numeral.

b) natural n~eral : digit FIGURE, digit token sequence option.

{Examples :

a) 0 ; 4096 ;

b) 1 ; 8 ; 8 ; 128 ; (Note that 00128 and -1 a re not integral-denotations.)

5. I. 1.2. Semantics

The a priori value of an integral-denotation is the integer which in

decimal notation is written as that integral-denotation in the representati,
language { I. I. 8 }.

{See also 5.1.0.2.b)

5.1.2. Real denotations

5.1.2.1. ~tax

a) r e a l denotation : variable-point numeral ; floating-point nun~ral.

b) variable-point numeral : integral part option, fractional part ;

integral part, point symbol.

:) integral part : integral denotation.

I) fractional part :

point symbol, digit zero sequence option, integral denotation.

~) floating-point numeral : stagnant part, exponent part.

~) stagnant part : integral denotation ; varlable-point numeral.

~) exponent part : times ten to the power symbol, power of ten.

~) power of ten : plusminus option, integral denotation.

5. I. 2. I. continued

{ Examples

a) 0.000128 ; 1.28e-4 ;

c) 128 ;

e) 1 .28e-4 ; 110+5

g) e-4 ;

5.1.2.2. Semantics

b) . 1 2 3 ; 0.128 ; 128. ;

d) .128 ; .000128 ;

f) 1 ; 1 . 2 8 ;

h) S ; ++45 ; -628 }

a) The a priori value of a fractlonal-part is the a priori value of its

integral-denotation divided by ten as many times as there are digit-tok~

in the fractional-part.

b) The a priori value of a vmrlable-point-ntmleral is the sum in the sons,

of numerical analysis of zero, the a priori value of its integral-part,
if any, and that of its fractional-part, if any {see also 5.1.0.2.b.}.

c) The a priori value of an exponent-part is ten raised to the a priori

value of the integral-denotation in its power-of-ten if that power-of-teJ

does not begin with a minus-symbol; otherwise, it is one-tenth raised to

the a priori value of that integral-denotatlon.

d) The a priori value of a floating-polnt-numeral is:the product in the

sense of numerical analysis of the a priori values of its stagnant-part

and exponent-part {see also 5.1.0.2.b.}.

5. I. 3. Boolean denotations

5.1.3.1. Syntax

a) boolean denotation : true symbol ; false symbol.

(Examples :

a) t r u e ; SaZse }

5.1.3.2. Semantics

The value of a true-symbol (false-symbol) is true (false).

5.2. Row of boolean denotations .

5.2.1. Syntax

a) BITS denotation : long symbol sequence option, fllpflop sequence.

_~. I. continued

{Examples :

10__1 ; l o ~ 101 }

{For flipflops see 3.0.3. e. }

2.2. Semantics

Let m stand for the number of flipflops in the denotation and n for the

lue of L bits ~r~dth {10.I.g}, L standing for as many times lcrnff as there

e long-symbols in the denotation.

If m ~ n, then the value of the row-of-boolean-denotatlon is a multiple

lue {2.2.3.3} whose descriptor has an offset I and one quintuple

, n, I, I,~I) ~_~le element with index i is a new instance of true

alse) if tee ~ constituent flipflop is a flip-symbol (a flop-symbol)

r i = I, ..., m and of false for i = m + 1, ..., n {; otherwise, the

lue is undefined).
b

(If the value of bits z,n~dth is, say, ~, then 707|possesses the same

lue as the collateral-expresslon (s 1

Lt 707__~is not a collateral-expresslon. }~'~i ~* l ~Is~ b~j ~Ls~

3. Row of character denotations

3.1. Syntax

b STRING denotation :

quote symbol, string item sequence option, quote symbol.

I string item : character token ; quote image ; other string item.

i quote image : quote symbol, quote symbol.

(Note that, since the Syntax nowhere allows row-of-character-denotatlons

occur following one another, the quote-IN~e can cause no ambiguities. }

(Examples :

)""; "a" ; "abode"; a._+.b._ *s._a.uforr~la ;
) a ; " " ; ? ;

) - - }

{For c h a r a c t e r - t o k e n s s e e 3 . 0 . 9 . d and f o r o t h e r - s t r i r ~ - l t ~ r ~ s s e e

• 1.5. Step ~. }

5.3.2. Semantics

a) Each character-token and other-string-ltem, as well as the quote-symbol

{not quote-image} possesses a unique character.

b) The value of a row-of-character-denotation is a multiple value {2.2.3.3}

whose descriptor has an offset I and one quintuple (I, n, 1, I, 1), where

n stands for the number of strlng-items contained in the denotation. For

i = I, ..., n, the element with index i of that multiple value is a new

instance of the character possessed by the i-th constituent strlng-item if

that strlng-item is a character-token or other-strlng-ltem, and otherwise,

{if that strlng-item is a quote-lmsge) is a new instance of the character

possessed by the qu6te-symbol.

5.4. Routine denotations

5. ~. I. Syntax

a)e routine denotation : PROCEDURE denotation.

b) procedure with PARAMETERS delivering a MODE denotation :

formal PARA~EES pack, virtus! MODE declarer, parameter symbol,

h i p a48pted MODE primary.

c) procedure with PARA~RS denotation :

formal PARAMETERS pack, parameter symbol, primary statement.

d) WCTAL PA~MEnmS and a PARAMEnm :

VICTAL PARAMEq~S, comma symbol, VICTAL pABAM~IER.

formal MODE parameter : formal MODE declarer, MODE identlfler.

procedure delivering a MODE denotation :

virtual MODE declarer, expression symbol, hip adapted MODE primary,

g) proced~e denotation : expression symbol, primary statement.

e)
f)

{ Example s:

b) (bool a, b) bool : (a I b I fq..!~£) ;

c) (ref int i) : (i > 0 I i := i - 7) ;

d) bool a, b ; r~ in_t i ;

[] real z ; [7 : 70] real y ; [in_~ m : in t n] real z ;

e) boos a ; ref in t i ;

f) real e~r(p] z [y) ;

g) ezpr(n = 7886 I warsaw I zandvoort) }

{For hlp-adapted-pr/marles see 8.B.I .a mad for prlmary-statements see

6.2.1.c. }

5.4.2. Semantics

A routine-denotation possesses that routine which would be obtained from

it by

i) placing an open-symbol before it and a close-symbol after it;

ii) inserting a denotes-symbol followed by a skip-symbol following the

last identifier in each constituent formal-parameter;

iii) deleting the constituent virtual-declarer, if any, preceding the

constituent parameter-symbol or expression-symbol;

iv) replacing the parameter-symbol, if any, by a go-on-symbol, and

v) deleting the expresslon-symbol, if any.

{For the use of routines, see 8.1 (formulas), 8.2.1 (unaccomp~ied-

calls) and 8.T (accompanied-calls). }

5.5. Format denotations

5.5.1. Syntax

a) format denotation :

formatter symbol, format primsry list, formatter symbol.

b) format primary : format item ; insertion option, repllcator,

format primary list pack, insertion option.

c) format item : MODE pattern, insertion option.

d) insertion : literal option, insert sequence ; literal.

e) insert : replicator, aligrnnent, literal option.

f) replicator : replication option.

g) replication : dynamic replication ; integral denotation.

h) dynamic replication : letter n, fitted serial integral expression pack.

i) aligrnnent : letter k ; letter x ; letter y ; letter 1 ; letter p.

j) literal : STRING denotation option , replicated literal sequence ;

S~ING denotation.

k) replicated literal : replication, STRING denotation.

{Example s :

a) ~"table.of"xlOa, n(lim-1) (16x3zd,3xIO(2x+. 12c~+2d"+j×"si+. 10de+2d))p~ ;

b) p"table_.of"xIOa ; $x10 (2x+. 12de+2d"+j× "si+. IOde+2d) ;

c) 120ko ("mon'; "rues '; "~dnes '; "th~s '; "fri", ,'sat~ ", "sun") "day" ;

d) p"tab~.of"x ; "da~/" ;

e) p"~ble_.of" ;

g) n(lim-;) ; 70 ;

5- 5. I. continued

h) n(lim-;) ;

3) "+J×" ;
k) 20". " }

i) sign mould : loose repllcatable zero frame option, slgn frane.

m) loose ANY frame : insertion option, ANY frame.

n) repllcatahle ANY fr~ne : repllcator, ANY frsme.

o) zero frame : letter z.

p) sign frsme : plusnttuus.

q) suppressible ANY frame : letter s option, ANY frame.

r)e frsme : ANY frame.

(Examples :

i) "--'72z+ ;

m) "='72z ;

n) 12z ;
q) si ; 10a }

(Formats (see 5.5.2.a) are used by the formatted transput routines

(10.5.4,5) to control "transput", i.e. "input" from and "output" to a

"file" (I0.5. I).

A format-item is used on output to control the "conversion" of a value

to a "string", i.e. a value of mode 'row of character', and, on input,

that of a string to a value.

The mode specified by a forN~t-it~n is that obtained by deleting 'pattern'

from that notion ending with 'pattern' whose terminal production is the

constituent pattern of that format-item.

Formats have a complementary meaning on input and output; that is, under

control of oneLfoH~t-item:

i) it is possible to convert a given value to a string by means of a

formatted output routine, provided the mode specified by the fornBt-

item is "output-compatible" with the mode of the given value, and

the number of characters specified by the format-item is sufficient

(10.5.4) ;

iii) it is possible to convert a given string to a value of a given mode,

provided the mode specified by the format-itch is "input-compatible"

with the mode of the value, the number of elements of the string is

5.5.1. continued 2

the same as that specified by the format-item, and the individual

characters of the string "agree" with the frames of the format-it~t

specifying them (10.5.5) ;

iii) if it is possible to convert a given value to a string and the

format-ltem does not contain a letter-k or letter-y as alignment,

and the format-item does not contain any digit-frames or character-

frames preceded by letter-s, then it is possible to convert the

resulting string (under control of the same format-item) into a

value; the resulting value is equal (approximately equal) to the

given value if the given value is a string, integer or truth value

(is a real value) ;

iv) if it is possible to convert a given value into a string and to

convert that string into a new value, then converting this new value

to a string yields the same string. }

{The value of the empty replicator is one; the value of a replication

that is an integral-denotation is the value of that denotation; the value

of a dynamic-replication is the value of its constituent fitted-serial-

integral-expression if that value is positive, and zero otherwise.

The number of characters specified by a format-item is the sum of the

numbers of characters specified by its constituent frames and the number

specified by a frame is equal to the value of its preceding replicator.

A frsme preceded by letter-s is "suppressed", and the characters

specified by it are also suppressed, i.e. :

on output, are deleted from the string that is output, and,

on input, are inserted in the string that is input, viz., by inserting

the character possessed by a point (tin~s-ten-to-the-power, plus-i-tlmes,

digit-zero, space) -symbol for a suppressed-point (exponent, complex,

digit, character) -frsme.

A format-prlmary which is not a format-item can control the transput

of a number of values; this number is at most the value of the constituent

replicator times the sum of the numbers of values of which the transput

can be controlled by the constituent format-primaries of its constituent

format-primary-list-pack.

An insertion is ~erformed~ by performing its constituent literals

and/or alignments one after the other.

5.5-I- continued 3

On output, a (replicated-) literal is "written" (I0.5.4.k) on the file,

starting from the current position on the line, as many times as the

value of the replicator.

On input, a (replicated-) literal is "required" (I0.5.5.b) on the file,

starting from the current position on the line, as many times as the

value of the replicator. If the string possessed by the literal is presen

then it is skipped; otherwise, the further elaboration is undefined.

An alignment may change the current page count, line count and position

on the line of the file as follows: (let n stand for the value of the

preceding replicator)

a) letter-k causes the position on the line to be set to n;

b) letter-x causes the position to be incremented by n (10.5.1.2.m);

c) letter-y causes the position to be decremented by n (10.5.1.2.n);

d) letter-1 causes the line count to be incremented by n and the

position on the line to be reset to one (10.5.1.2.o);

e) letter-p causes the page count to be incremented by n and both line

count and position on the line to be reset to one (10.5.1.2.p).

A format-ltem can be used to "edit" a value as follows:

i) The value is converted by an appropriate output routine (I0.5.2.c,

d, e) to a string of as many characters as specified by the format-

ite~n. If the format-item is an integral-pattern, then this conversic

takes place to a base equal to the radix, if present, and base ten

otherwise.

ii) If the format-item contains a sign-mould, then a character specifie~

by the sign-frsgne will be used to indicate the sign, viz., if the

sign-mould contains a minus-symbol and the value is positive

(negative), then a space (minus), and, otherwise, a plus (minus).

This character is shifted in that part of the string specified by

the slgn-mould as far to the right as possible across any lea~ling

zeroes and those zeroes are replaced by spaces;

e.g., under the sig~q-mould 48+, the string possessed by "+0003" is

edited into that possessed by "...+3". If the format-item doesnot

contain a slgn-mould and the value is negative, then the result is

undefined.

iii) Leading zeroes in those parts of the string specified by any

remaining zero-frames are replaced by spaces; e.g., under the

I
5.5. I . continued 4 iI

format-item zcL~d2d, the integer possessed by 180768 is edited into :~i~l

the string possessed by " 7 8 . 168" .

iv) Suppressed characters are deleted.

A formsJz-item can be used to "indit" a string into a value of a

given mode as follows: I~i~ ~

i) If the format-item contains ~ sign-mould, then the character specifi i

by ~ . 1 .~ r ~ ' - r P ~_s one of the characters specified by 11

that slgn-mould. Only spaces may appear in front of this character il}l~

and no leading zeroes may appear after it. The leading spaces are

deleted, and if the character specified by the sign-frame is a space,~

and the sign frame is a mlnus-symbol, then that character is replace@il

by a plus. i~i ~

~i) Leading spaces in those parts of the string specified by any rema~nl~!

zero-fr~ne are replaced by zeroes.

[ii) For each suppressed digit, a zero is inserted into the string; for

each other suppressed character, a space is inserted.

Lv) The string is converted by an appropriate input routine (10.5.B.b,

c, d) into a value of the given mode.

The insertion, if any, preceding the constituent foNnat-primary-list

)ack of a format-primary that is not a format-item is performed before

;he first constituent fo~at-ite~n is used to control the transput of a

~alue. The insertion, if any, following that Fo~nat-prlnBry-list-pack is

~erformed after all constituent Fo~nat-items have been used. }

;.5.1 .I. Integral patterns

,) integral pattern : radix mould option, sign mould option,

integral mould ; integral choice pattern.

~) radix mould : radix, letter r.

) radix :digit two ; digit four ; digit eight ; digit one, digit zero ;

digit one, digit six.

) integral mould : loose replicatable suppressible digit frsme sequence.

) digit frame : zero frs~ne ; letter d.

) integral choice pattern : insertion option, letter c, literal list pa¢

5.5. I .I. continued

{ Example s :

a) 2r6d$Osd ; 12z+d ; zd"-"sd"-19"2d ;

120kc ('Son", "tues ", "wednes ", "thure ", " fri ", "satur ", "sun") ;

b) 2r ;

c) 2 ; 4 ; 8 ; 70 ; 16 ;

d) zd"-"zd"-19"2d ;

f) 120kc('~on", "rues", "wednes", "thurs", "fri ", "satur", "sun") }

{If the integral-pattern is not an integral-choice-pattern, then,

i) on output, the value to be output is edited into a string and

"transcribed onto" the file by, for all fr~nes occurring in the

pattern, first performing the preceding insertion, if any, and then

outputting to the file (I0.5.1.2.k) that part of the string specified

i l l f i ' ' scribed from" the f i le, string is
obtained by, for all frames occurring in the pattern, first

performing the preceding insertion, if any, and then, for a frame

that is not suppressed, inputting (10.5.1.2.j) from the file as many

characters as are specified by the frame ; that string is indited into

a value£ @~

the insertion, if any, following the last ~ o~ ~k~

frsme Sis performed.

If the integral-pattern is an integral-cholce-pattern, then the

insertion, if any, preceding the letter-c is performed, and,

i) on output, letting n stand for the integral value to be output, if

n > 0 and the number of literals in the constituent literal-list-

pack is at least n, then the n-th literal is vritten on the filet

otherwise, the further elaboration is undefined;

ii) on input, one of the constituent literals of the constituent literal-

list-pack is required on the filet if the i-th constituent is the

first one present, then the value is it if none of these llterals

is present, then the further elaboration is undefined;

iii) finally, the insertion, if any, following the constituent literal-

1 list-pack is performed. }

5.5. 1.2. Real patterns

a) real pattern : slgn mould option, real mould ; floating point mould.

b) real mould : integral mould, loose suppressible point frame,

integral mould option ;

loose suppressible point frame, integral mould.

c) point frame : point symbol.

d) floating point mould :

stagnant mould, loose suppressible exponent frame,

sign mould option, integral mould.

e) stagnant mould : sign mould option, INTREAL mould.

f) exponent frane : letter e.

{ Example s:

a) +72d ; +d. 77de+2d ;

b) d. 77d ; .72d ;

d) +d.17de+2d ;

e) +d.71d }

{On o u t p u t , under c o n t r o l o f a r e a l - p a t t e r n , a r e a l o r i n t e g r a l va lue

is edited into a string and transcribed onto the file;

on input, a string is transcribed from the file and indited into a real

value. }

5.5. I • 3. Boolean patterns

a) boolean pattern :

insertion option, letter b, boolean choice mould option.

b) boolean choice mould :

open symbol, literal, comma symbol, literal, close symbol.

{ Example s :

a) l"reeult"14xb ; b("","error") ;

b) ("", "error") }

{If the boolean-pattern does not contain a cholce-mould, then the

effect of using the pattern is the same as if the letter-b were followed

by ,,0,,;.
The i n s e r t i o n , i f any , p r e c e d i n g t h e l e t t e r - b i s p e r f o r m a d $ o - ~ j

i) ~ ~ o u t p u t , i f t h e t r u t h va lue to be ou tpu t i s t r u e , t h e n the f i r s t

constituent literal of the constituent cholce-mould is performed, and,

otherwise, the second;

5.5. I .3 • continued

~;) ~ input, one of the constituent llterals of the constituent choice-

mould is required on the file ; if the first literal is present, then

the value true is found; otherwise, if the second literal is present,

then the value false is found; otherwise, the further elaboration is

undefined¥

~i)~inallY, the insertion, if any, following the constituent cholce-mould

is performed. }

5- 5- I .h. Complex patterns

a) COMPLEX pattern :

real pattern, loose suppressible con~01ex frame, real pattern.

b) complex frame : letter i.

{ Example :

a) 2x+. 72de+~d"+jx"si+. 70de+~d }

{On output, the complex or real or integral value is edited into

a string and transcribed onto the file; on input, a string is transcribed

from the file and indited into a complex value. }

5.5. I .5. String patterns

a) STRING pattern :

loose repllcatable suppressible character franc sequence.

b) character frame : letter a.

{ Example :

• a) p"table.of"xTOa }

{On output, a given string is edited into a string and transcribed

onto the file;

on input, a string is transcribed from the file and indited into a string.

If the value to be transput is a character, then a string having one

element is transput.

A string to be output must have as many elements as the number of

characters specified by the format-item. }

5.5. I. 6. Transformats

I a) structured with a STRING named ALEPH transfor~at :

hip adapted unitary format expression.

{Example: (mao [,~6d,~i.f[6a,,-'[, f) }

5.5.1.6. continued

{For unltary-expressions see Chapter 8. }

{Transformats are used exclusively as actual-parameters of out

(I0.5.4.a) and in (I0.5.5.a); for reasons of efficiency, the programmer

has deliberately been made unable to use them elsewhere by the choice of

'ALEPH' (1.2.5.d).

Although transformats are not denotations at all, they are handled

here because of their close connection to formats. }

5.5.2. Semantics

a) The format {2.2.3.4} possessed by a given format-denotatlon isthe

same sequence of symbols as the given format-denotation.

b) A given transformat is elaborated in the following steps:

Step I: It is preelaborated {1.1.6.f} ;

Step 2: It is replaced by the format obtained in Step I, and the thereby

resulting format-denotation is considered ;

Step 3: All constituent dynsm_Ic-repllcatlons {5.5.1.h} of the considered

format-denotation are elaborated collaterally {6.3.2.a}, where the

elaboration of a dynamic-replicatlon is that of its constituent serial-

expression;

Step 4: Each Of those dynamic-replications is replaced by that integral-

denotation {5.1.1) which possesses the same value as that dynamic-

replication if that value is positive, and, otherwise, by a diglt-zero ;

Step 5: That row-of-character-denotation {5.31 is considered which would

be obtained by replacing, in the considered format-denotatlon as

modified in Step h, each constituent quote-symbo]~ by a quote-image

{ 5.3. I. c } and .oaaa~f6rmatter-symbol by a quote-symbol ;

Step 6: A new instance of the value of the considered row-of-character-

denotation is made to be the {only) field of a new instance of a

structured value {2.2.3.21 whose mode is that obtained by deleting

'transformat' from that notion ending with 'transformat' of which the

given transformat is a terminal production

Btep 7: The considered format-denotation is replaced by the given

transformat, and that transformat is made to possess the structured

value obtained in Step 6.

6. Phrases

6.0.1. Syntax

a)~ phrase : COERCEIX SOME PHRASE.

b)* clause : COERCETY SOME CLAUSE.

c), expression : COEECETY SCME MODE expression.

d), declaration : SOME declaration.

e)* statement : SOME statement.

f)~ SOME phrase : COERCETY SOME PHRASE.

g), SOME clause : COERCETY SOME CLAUSE.

h)~ SGME expression : COERCETY SOME MODE expression.

6.0.2. Semantics

a) The elaboration of a phrase begins when it is initiated, it may be

!'interrupted", "halted" or "resumed", and it ends by being "terminated"

or "completed", whereupon, if the phrase "appoints" a unitary-phrase as
• %. , I its successor, the elaboration of that unitsry-phrase is initiated,

~$

except ~ mentioned in 7.0.2.a.

b) The elaboration of a phrase may be interrupted by an action {e.g.

overflow) not specified by the phrase but taken by the computer if its

limitations do not permit satisfactory elaboration. {Whether, after an

interruption, the elaboration of the phrase is resumed, the elaboration

of sc~e unitary-phrase is initiated or the elaboration of the progr~sl

ends, is ~ in this Report.)

~U

c) The elaboration of a phrase may be halted {I0.4.]4}, i.e. no further

actions c o n s t i t u t i n g t h e e l a b o r a t i o n of t h a t p h r a s e t a k e p l a c e u n t i l the
b

elaboration of the phrase is resumed {I0.4.~}, if at all.

;. 0.2. continued

L) A given clause is "protected" in the following steps:

:tep I: If an occurrence of an identifier (indication) which is the same

as some identifier (indication) occurring outside the given clause

defines {4.1.2.a} (indication-defines {4.2.2.a}) within it, then the

defining (indication-defining) occurrence and all occurrences identifying

it are replaced by occurrences of one same identifier (indication) which

does not occur elsewhere in the program and Step I is taken; otherwise,

Step 2 is taken ;

tep 2: If an occurrence of an indication which is the same as some

indication occurring outside the given clause is operator-defined within

it, then the operator-defining occurrence and all occurrences identifying

it are replaced by occurrences of one same new indication which does not

occur elsewhere in the program and Step 3 is taken; otherwise, the

protection of the given clause is complete ;

tep 3: If the indication is a priority-indication then Step 4 is taken;

otherwise, Step 2 is taken ;

~ep 4: A copy is made of the priority-declaration containing that occurrence

of the indication which is identified by that operator; the occurrence

of that indication in the copy is replaced by an occurrence of that new

indication; the copy, thus modified, preceded by an open-symbol and followed

by a go-on-symbol, is inserted preceding the given clause, a close-symbol

is inserted following the given clause, and Step 2 is taken.

(Clauses are protected in order to allow unhampered definitions of

Lentlfiers, indications and operators within rsnges and to permit a

~aningful call, within a range, of a procedure declared outside it. }

(What's in a name? that which we call a rose

By any other name would smell as sweet.

Romeo and Juliet, William Shakespeare. }

6. I. Serial phrases

6.1.1. Syntax

a) serial declaration :
chain of unitary declarations separated by go on symbols.

b) COERCR~Y serial CLAUSE : declaration prelude option,

ch~n of COERCETY CLAUSE trains separated by con~leters.

c) declaration prelude : serial declaration, go on symbol.

d) COERCETY CLAUSE train : label sequence option,

statement prelude option, COERCETY unitary CLAUSE.

e) statement prelud e :

chain of unitary statements separated by sequencers, sequencer.

f) sequencer : go on symbol, label sequence option.

g) label : label identifier, label symbol.

h) completer : completion symbol, label.

{Examples :

a) real x ; real y (7) ; int n = abs j ;

• b) I : true ; 17 : 12 : x := a + 7 ; (x > 0 13) x := 7 - x) ; false.

13 : y : = y + 7 ; irMA ;

c) tea}. x ; i n t i ;
d) i7 : 12 : x := a + 7 ; (z > 0 I 13 i x := 7 -z) ~ false ;

e) x := a + 7 ~ (z > 0 I 13 i x := 7 - x) ; ;

f)~ ;; l: ;

g) l:;

h) . Is : . }

{For unitary-phrases see 6.2 and Chapters 7 and 8. }

6.1.2. Semantics

a) The elaboration of a serial-declaration is initiated by initiating

the elaboration of its first constituent unitary-declaration.

b) The elaboration of a serial-clause is initiated by protecting it

{6.0.2.d} and then initiating the elaboration of its first constituent

! unitary-phrase.

6. I. 2. continued

c) The completion of the elaboration of a unltary-pbrase preceding a

go-on-symbol initiates the elaboration of the first unltary-phrase

textually after that go-on-symbol.

d) The elaboration of a serial-phrase is

i) interrupted (halted, resumed) upon the interruption (halting,

resumption) of a constituent unltary-phrase;

ii) terminated upon the termination of the elaboration of a constituent

unitary-phrase appointing ~ successor outside the serial-phrase,

and that successor {6.2.2.g} is appointed the successor of the

serial-phrase.

e) The elaboration of a serial-declaration is completed upon the

completion of the elaboration of its last constituent unltary-declaratlon.

f) The elaboration of a serial-clause is completed upon the completion

of the elaboration of its last constituent unitary-clause or of that of

a constituent unitary-clause preceding a con~01eter.

g) The value of a serial-expresslon is the value of that constituent
~ ~ppv e,ssi~

unitary-~A@ue~ the completion of whose elaboration completed the

elaboration of the serial-expression, provided that the scope {2.e.4.2}

of that value is larger than the serial-expresslon {; otherwise, the

value of the serlal-expression is undefined}.

{In ~/ := (m := 7.2 ; 2.3), the value of the serlal-expression

z := 7.2 ~ 2.3 is the real number possessed by 2.3. In

xx := (real r(O. 1) ; r), the value of the serial-expression real r(O. 7) ; r

is undefined since the scope of the name possessed by r is the serial-

expression itself. }

6.2. Unitary statements

6.2. I. Syntax

a) unitary statement : formary statement ; MODE confrontation.

b) formary statement : ADIC formula ; called ADIC formala;

NONPROC ADIC formula ; called NONPROC ADIC formula ; primary statement.

c) primary statement : CLOSED statement ; cohesive statement ;

called cohesion ; called NONPROC cohesion.

d) cohesive statement : Jump ; skip ; statement call ; NONPROC cohesion.

e) skip : skip syntx~l.

f) .lured : ~o to symbol ootion, label identifier.

6.2. I. continued

{Examples :

a) goto ~xzrs~ ; x := x + 7 ;

b) ~ i ; x + y ; stop ;

c) (z := 7 ; y := O) ; (x := 7, y := O) ; (p I x := 1 I y := O) ;

o~ grenoble ; stop ; random ;

d) kootwijk ; sk~ ; setrandam (m) ~ det(y2, i7) ; z ;

e) skip

f) goto amsterdam ; zandvoort }

{For unitary-declarations see Chapter 7, and for unltary-expressions

see Chapter 8.

For confrontations see 8.0.1.d, for formulas see 8.1, for called-formula

and called-coheslons see 8.2.1.1.b, c, for closed-statements see 6.4.1.a

for collateral-statements see 6.3.1.b, for conditional-statements see

6.5.1.a, for statement-calls see 8.7.1.c and for cohesions see 8.3.I.b.

6.2.2. Semantics

a) The elaboration of a skip involves no action.

{For the use of skips as statements and expressions see the remarks

after 8.3.2.d. } ~

b) The elaboration of a Jtmp terminates the elaboration of the unitary-

clause which is that Jump, and it appoints as its successor the first

unltary-clause textually after the defining occurrence {in a label

(4.1.2)) of the label-identifler occurring in the Jump.

{Note that the elaboration of a jump may terminate the elaboration of

other phrases (6.1.2.d, 6.3.2.a). }

6.3. Collateral phrases

6.3.1. Syntax

a) collateral declaration : collected declaration.

b) collateral statement : collected statement.

c) COERCETY collateral row of NDDE expression :

COERCETY collected MDEE expression.

d) COERCETY collected PHRASE : parallel symbol option, open symbol,

COERCETY unitary PHRASE, c(==,a symbol, COERCETY unitary PHRASE lis

close symbol.

;. 1. continued

{Examples :

(real x, real iV) ; (and, by 9.2.c, d) rea% x, y ;

(x := O, II := 7) ; (x := Oj y := 7~ z := 2) ;

(x, n) ; (7, 2.3, 4.6) }

{For unitary-phrases see 6.2 and Chapters 7 and 8. }

I. 2. Semantics

If a number of constituents of a given terminal production of a notion

: "ela1~rated collaterally", then this elaboration is the collateral

;ion {2.2.5) consisting of the {merged) elaborations of these constituen~

L is:

initiated by initiating the elaboration of each of these constituents

i interrupted upon the interruption of the elaboration of any of

these constituents ;

.) completed upon the completion of the elaboration of all of these

constituents ; and

i terminated upon the termination of the elaboration of any of these

constituents, and if that constituent appoints a successor, then this

is the successor of the given terminal production.

A collateral-phrase is elaborated in the following steps, where "m"

rods for the number of its constituent unltary-phrases:

:p 1: Its constituent unltary-phrases are elaborated collaterally {a};

Lf it is an expression, then Step 2 is taken; otherwise, its elaboration

'~s complete ;

~p 2: If the values of the constituent tuqltary-expressions of the

;ollateral-expression are names {2.2.3.5} one or more of which refers

;o an element or subvalue of a multiple value having one or more states

12.2.3.3.b} equal to zero, or if the values of those unitary-expressions

Lre -,!ltiple values {2.2.3.3) not all of whose corresponding upper (lower)

~unds are equal, then the further elaboration is undefined; otherwise,

~tep 3 is taken ;

6.3.2. continued

Step 3: The value of the collateral-expression is a new instance of a

multiple value whose mode is that obtained by deleting 'collateral',

,expression' and the terminal production of 'COFERCETY' from {the notion

which is} that direct production of 'collateral expression' of which

the given collateral-expression is a terminal production; this new

multiple value is established as follows :

if

the values obtained in Step I are not multiple values

then

its element with index "i" is a new instance of the value of the

i-th constituent unltary-expression and its descriptor consists of an

offset 1 and one quintuple (I, m, 1, I, I);

otherwise, those values are multiple values and the elements with

indices (i-I) x r + j, j = I, ..., r of the new value, where r stands

for the number of elements in one of those values, are the elements of

the value of the i-th constituent unitary-expression and the descripto

of the new value is a copy of the descriptor of the value of one of

the constituent unltary-expressions in which an additional quintuple

(I, m, r, I, I) has been inserted in front of the old first quintuple,

the offset has been set to I, d has been set to I, and, for
n

(u i + I) × i = n, n - I, ..., 2, the stride di_ I has been set to - i l

{Th~ ~ ~ of ~ parallel-symbol ~,kes it possible to control the

progress of the elaborations of the constituent unitary-phrases by means

of the synchronization operations of 10.4. }

6.~. Closed phrases

6.~.I. Syntax

a) COE~ETY closed PHRASE :

elmnentary symbol option, open, COERCETY serial PHRASE, close.

~) {FExamples :

(real x = u) ; elem be~in i := i + 7 ; j := j + 7 end inorement~

% C)); I' "~) "~ ~'{ "''" L'~

~.2. Semantics

The elaboration of a closed-phrase is that of its constituent serial-

~ase.

The value of a closed-expresslon is that, if any, of its constituent

~ial-expression.

The elaboration of a closed-phrase wkich begins with an elementary-

~bol is an elementary action {2.2.5}.

5. Conditional clauses

5.1. Syntax

COERCETY conditional CLAUSE :

if symbol, COERCETY choice CLAUSE, fi symbol.

COERCETY choice CLAUSE :

condition, COERCETY then CLAUSE, COERCETY else CLAUSE option.

condition : fitted serial boolean expression.

COERCETY TI-1EI.ql~, CLAUSE : T~-~E symbol, COERCETY serial CLAUSE.

{ Exsmple s:

(x > 0 I x [0) ("adapted" in ~ := (z > 0 [x [0)) ;

i~ overflow then exit ~ ;

x • 0 I x I 0 ; overflow then exit ;

x • 0 ; overflow ;

I x ; I 0 ; then exit}

{For set/b-clauses see 6. I .I .b. }

5.2. Semantics

A conditional-clause is elaborated in the following steps :

ep 1 : Its constituent condition is elaborated ;

ep 2: If the value of that condition is true, then its constituent then-

clause and otherwise its constituent else-clause, if any, is considered ;

ep 3: The clause following the then-symbol or else-symbol of the

considered clause, if any, is elaborated;

Bp ~: If the conditional-clause is a conditional-expresslon, then its

value is that of the clause elaborated in Step 3, if any; otherwise,

its value is undefined.

6.5.2. continued

b) The elaboration of a condltlonal-clause is

i) interrupted (halted, resumed) upon the interruption (halting,

resumption) of the elaboration of the condition or the considered cl~

ii) completed upon the completion of the elaboration of the considerec

clause, if any; otherwise, completed upon the completion of the

elaboration of the condition; and

iii) terminated upon the termination of the elaboration of the condltlc

or considered clause, and, if one of these appoints a successor, thel

this is the successor of the conditional-clause.

7- Unitary declarations

7.0.1. Syntax

a) unitary declaration : mode declaration ;
prlorltydeclaration ; identity declaration ;

operation declaration ; closed declaration ; collateral declaration.

{Examples :

a) mode bite = [7 : bite width] bool ;

prier~t~ pl~s = 7 ;

int m = 4096 ; real x ; bool oo~lete(false) ;

proo sgn = (real x) int : (x = 0 i 7 I sign x)

÷ = (real a, b) int : (round a ÷ round b) ;

(real x = u) ; real x, y }

~7.0.2. Semantics

a) l~during the elaboration of an expression contained within a unitary-

declaration, a Jump is elaborated {6.2.2~} whose successor is a hnltary-

clause outside that declaration but within the smallest rang~

containing it, then the further elaborationis un@efined.

b) An external object {2.2.1} which was caused to possess a valua

by the elaboration of a declaration ceases to possess that value

upon termination or completion of the elaboration of the smallest range

containing that declaration.

{For mode-declarations see 7.2, for priority-declarations seeT.3,

for identity-declarations see 7.~, for operation-declarations see 7.5,

for closed-declarations see 6.~ and for collateral-declarations see 6.3.}

{The elaboration of the closed-expression

begin[7 : (go to e ~ S)] int a ; e : a[7] := 7 end

is undefined, according to a. }

7.1. Declarers

7.1.1. Syntax

a)* declarer : VICTAL MODE declarer.

b) VICTAL MODE declarer :

VICTAL MODE declarator ; MODE mode indication.

c) VICTAL PRIMITIVE declarator : PRIMITIVE symbol.

d) VICTAL long IN~EAL declarator :

long symbol, VICTAL INTHEAL declarator.

{Examples :

b) real ; bits ;

c) int ; real ; bool ; char ; format ;

d) lone int ; lon~ lon~ real }

e) VIRACT structured with F~.oS declarator :

structure symbol, VIRACT FT~DS declarator pack.

f) VIRACT F~.nS and a Finn declarator :

VIRACT F~DS declarator, comma symbol, VIRACT F~D declarator.

g) VIHACT MODE named TAG declarator :

VIRACT MODE declarer, MODE named TAG selector.

h) MODE named TAG selector : TAG.

i)e field S~ATOR : Flq~,~ S~ATOR ; VIHACT F,~:~D ~ATOR.

(Examples :

e) etruotCstrin~ n~e, real value)

f) etrin~ naP, real value ;

g) e t r ~ n~e ;

h) r~ne }

j) virtual reference to MODE declarator :

reference to symbol, virtual MODE declarer.

k) actual reference to MODE declarator :

reference to symbol, virtual MOEE declarer.

l) formal reference to NONHEF declarator :

reference to symbol, formal NONHEF declarer.

m) formal reference to reference to MDE~ declarator :

reference t o symMol, vlrt,~1 reference to MOE~ declarer.

7.1.1. continued

{Examples:

j) re t [] real ;

k) re~ [3 real ;

i) relY7 : int n] real ;

m) re~ re~ [] real }

VICTAL ROWS NONROW declarator : sub symbol, VICTAL ROWS rower,

bus symbol, virtual NONROW declarer.

VICTAL row of ROWS rower :

VICTAL row of rower . ~ , com~ symbol, VICTAL ROWS rower.

VICTAL row of rower :

VICTAL lower bound, up to symbol, VICTAL upper bounds E~PTK

formal LOWPER bound : ~

flexible LOWPER bound ; strict LOWPER bound ; virtual LOWPER bound.

actual LOWPER bound : strict LOWPER bound ; virtual LOWPER bound.

v ual b0und :

strict LOWPER bound : hip fitted integral ~ formaryo

flexible LOWPERbound : integral symbol, integral identifier.

{Examples :

n) [7 : m, 7 : n] real ;

o) 7 : m, 7 : n ; , 7 : n ;

p) 7 : m ; ;
R) int n ; i + j ; ;

r) i+j; ;

t) i+j;

u) int n }

VICTAL PROCEDU~ declarator : procedure symbol, PROCEDURE tail.

procedure tall : I~PTY.

procedure with PARAMETERS tall : virtual PARANEEERS pack.

virtual MODE parameter : virtual MOIE declarer.

procedure PARAMETY delivering a MODE tail :

procedure PARAMETY tail, virtual MODE declarer.

7-1.1- continued 2

{Examples :

v) proc ; proc(reaIj int) ; ~roc(real~ int) bool ;

w) ;

x) (real) int) ;

y) real ;

z) (reals int) bool }

aa) VICTAL union of MODES mode declarator :

union of symbol, virtual MODES declarer pack.

ab) virt~1~] MODES and MODE declarer :

virtual MOLES declarer, corona symbol, virtual MODE declarer.

{Examples :

aa) union(int~ bool) ;

ab) ~nt~ bool }

{Rule g, together with 1.2.1.k, i, m, n, o, p and ~.I.1.c, d, leads to

an infinity of production rules of the strict lang1,~ge, thereby enabling

the Syntax to "transfer" the fleld-selectors (i) into the mode of

structured values, and making it ungrammatical to use an ",,n~nown" field-

selector in a fleld-selection (8.6). Concerning the occurrence of a given

fleld-selector more than once in a declarer, see ~.4.2, which i~plies

that strict (real z, int x) is not a (correct) declarer, whereas

struct(real x, struct(int x, bool p)p) is.

Notice, however, that the use of a given fleld-selector in two different

declarers within a given range does not cause any ambiguity. Thus,

mode cell = struct(strin~ ~, ~t cel____l next) and

mode link = struct(ref link next, r~f cell Calm)

may both be present in some range.

Rules j, k, 1 and m imply that, for instance, rent : in% n] real z

may be a formal-parameter (5.4. I. e), whereas ~f rex I :in$ n] ~al

may not. }

7-1-2- Semantics

a) A given declarer specifies that mode which is obtained by deleting

'declarer' and the terminal production of the metanotion 'VICTAL' from
! ¢

that direct production {I.1.2.1} of the notion 'declarer' of which the

given declarer is a production.

b) A given declarer is "developed" as follows :

Step : If it is, or contains, a mode-lndication which is ~ an actual-

declarer not ~ ~j a ref~ren~-~gS-~Zmbel-; or ~ formal-declarer

m~t~yr~c~&cd b-j t~ rcfcrcncc tc~j~cL, then that indication is

replaced by a copy of the constituent actual-declarer of that mode-

declaration {7.2} which contains its indication-defining occurrence

{h.2.2.b}, and the Step is taken again; otherwise, the development

of the declarer ~ ~ $~ ~°-~J~

{A declarer is developed during the elaboration of an actual-

declarer (c) or identlty-declaration (7.h.2. Step 1).~a@-~g~W~us

. ~-~-oa.~o are maae in c,~-~.,.~- ~h~t- ' ~ - - - - ~

_ram-,* "hm ~4 . , . . ,4+~ %

c) A given actual-declarer is elaborated in the following steps:

Step I: It is developed {b} ;

Step 2: If it now begins with a structure-symbol, then Step ~ is taken;

otherwise, if it now begins with a sub-symbol, then Step 5 is taken;

otherwise, if it now begins with a unlon-of-symbol, then Step 3 is taken;

otherwise, a new instance of a value of the mode specified {a} by the

given actual-declarer is considered, and Step 8 is taken ;

Step 3: Some mode is considered which does not begin with 'union of' and

from which the mode specified by the given actual-declarer is united

{2.2.4.1.h}, a new instance of a value of the considered mode is

considered, and Step 8 is taken ;

Step ~: All its constituent actual-declarers are elaborated collaterally

{6.3.2.a}; the values referred to by the values {names) of these actual-

declarers are made, in the given order, to be the fields of a new

instance of a structured value of the mode specified by the given

actual-declarer, this structured value is considered, and Step 8 is

taken ;

7- I. 2. continued

Step 5: All its constituent strlct-lower-bounds and strlct-upper-bounds

are elaborated collaterally ;

Step 6: A descriptor {2.2.3.3} is established consisting of an offset I

and as many quintuples as there are constituent actual-row-of-rowers

in the given declarer; if the i-th of these actual-row-of-rowers

contains a constituent strict-lower-bound (strict-upper-bound), then

li(u i) is set equal to its value and si(t i) to I, and otherwise s.1(t.l)

is set to 0 {and i. (u.) is unrefined}. ;~k,~ ~ ;s ~ ~o 11~ ~ ~o, 4'~,~-,

~di~cr(~pd~r ~ ' s t ' A ~ - t l ~ %~J~h~e'~escriptor o f a m u l t i p l e v a l u e Step 7 : The

of the mode specified by the given actual-declarer; each of its

elements is a new instance of some value of some mode {not beginning

with 'union of' and} such that the mode specified by the last

constituent vlrtual-declarer is or is united from {2.2.h.1.h} it;

this multiple value is considered

Step 8: A name {2.2.3.5) different from all other names and whose mode

is 'reference to' followed by the mode specified by the actual-

declarer, is created and made to refer:to the considered value; this

name is then the value of the given actual-declarer, u~cn the ecLT!bt!¢T

~f any, cf ito ~l.Lv~&tlo;;.

7.2. Mode declarations

7.2.1. Syntax

a) mode declaration : mode symbol, MODE mode indication, equals symbol,

act[,8] MODE declarer.

{Examples :

a) mode bits = [7 : bits width] bool;

struot co~l = (rea~ re, ira) (see 9.2.b, c.) ;

union primitive = (int~ real, bool, chars ~or~t) (see 9-~) }

7.2.2. S~ntics

The elaboration of a mode-declaratlon involves no action.

{See ~.4.2. concerning certain mode-declarations which are not

contained in proper programs. }

7.3. Priority declarations

7.3.1 • Syntax

a) priority declaration : priority symbol, priority NL~m~ER indication,

equals symbol, NUMBER token.

b) one token : digit one symbol.

c) TWO token : digit two symbol.

d) THREE token : digit three symbol.

e) FOUR token : digit four symbol.

f) FIVE token : digit five symbol.

g) SIX token : digit six symbol.

h) SEVEN token : digit seven symbol.

i) EIGHY token : digit eight symbol.

j) NINE token : digit nine symbol.

{Example :

a) priority + = ~ }

7.3.2. Semantics

The elaboration of a prlority-declaration involves no action.

{For a s~m~y of the standard prlority-declarations, see the remarks

in 8.1.2. }

7.4. Identity declarations

7.4.1. Syntax

a) identity declaration :

formal MODE parameter, equals symbol, actual MODE parameter.

b) actual MODE parameter : MODE transformat ;

hip adapted unitary MODE expression ; local MODE generator.

{Examples :

a) real e = 2 . 7 1 8 2 8 1 8 2 8 4 6 9 0 4 ~ ; int e = abs i ;

real d = r e(z x con z) ; re~.] real al = a[. :k] ;

re~ real zlk = z1[k] ; comp1 unit = 1 ;

proc int time = clock ÷ cycles ;

(The following declarations are given first without, and then with,

the extensions of 9.2.)

7 . 4 . 1 • con t inued

re. real. z = loc real ; real z ;

re~ in__~ sum = loc int (0) ; int sum (0) ;

_~f[,] real a = loqET:m, 7:n] real(z2) ; [7:m, 1:n] real a(z2) ;

Eoc(rea l) real ver+ = (r e a l z) re~. l . : (~ - c o s (z)) ;

proq vers = (real z) real : (~ - cos(x)) ;

re~. ~roc(real) real p = lo__~ proc(real) real ; proc(real) real p ;

red proc(real) real q = loq proc(real) real((real z) real : (z > 0 I z I

proc q((real z) real : (z > 0 1 z I ~)) ;

real }

{For formal-parameters see 5.4.1.e, for hip-adapted-unitary-expressions

see 8.0.1 .a, for local-generators see 8.5.1 .b and for transformats see 5.5.1

7.4.2. Semantics

An identity-declaration is elaborated in the following steps:

Step 1: Its textlm]ly first constituent formal-declarer {in the formal-

parameter} is developed {7.1.2.b} ;

Step 2 : Its textually last constituent actual-pers~eter, and all

strict-lower-bounds and strict-upper-bounds contained in that formal-

declarer, as possibly modified by Step 1, but not contained in any

constituent strict-lower-bound or strict-upper-bound of that formal-

declarer, are elaborated collaterally {6.3.2.a} ;

Step 3 : If the value of that actual-par~eter refers to an element or

subvalue of a multiple value {2.2.3.3} having one or more states eq1,,l

to 0, then the further elaboration is undefined ;

Step 4: Each defining occurrence {4.1.2.a}, if any, of an identifier

in a constituent flexible-lower-bound or flexible-upper-bound of that

formal-declarer is made to possess a new instance of the value of the

corresponding bound in the {multiple} valueLof that actual-parameter ;

Step 5:~-~m-~-~-~ constituent strict-lower-bound or strict-

7 ~ " ~ , ~ + .~ ~*~'~,t~+- - ~ °^ 3 . 2 . = } .L~ upper-bound, __ +~^ " " +i.u?n

flcx/bi~-lo~r-bu~,/ ~. =~:~Xe-~.~-~v~-~ of that formal-declarer

is not the same as that of the corresponding bound in the value4of

that act;ml-parameter, then the further elaboration is uudefined~

otherwise, the identifier following that formal-declarer is made to

possess a new instance of the value of that actual-parameter.

+ .l . l , . ,r+l"+~ [~'..~ %.~.] +ot l=P+. . i l) . j +~ +~* +,t,.e o+ o,,,,.+ oP

.4.2. continued

{According to Step 5, the elaboration of the declaration

[7 : 2] r ea l x = (7.2, 3.4, 6.6)

3 undefined, as is that o f

[7 : int nj 7 : int n] real x = ((7.7, 7.2), (2.7j 2 .2) ,

(~.7, 3 .2)) . }

5- Operation declarat ions

5.1. Syntax

operation declaration :

OPERATIVE caption, equals symbol, actual OPERATIVE parameter.

OPERATIVE caption :

operation symbol, OPERATIVE tail, OPERATIVE ADIC operator.

{Examples :

Ubs = (rea l a) rea l : (a < 0 I -u I a) (see 9 .2 . f) ;

o~ ^ = (.bool a, b) bool : (a I b I false) ;

(real) real abs ; ~(bool, bool) bool ^ }

{For actual-parameters see 7.4.1.b, for tails see 7. I. 1.w, x, z and
~ operators see 4.3. }

;.2. Semantics

operation-declaratlon is elaborated in the following steps:
o,c~u*|- p a , . . ~ t e r

p I: Its constituent ~ is elaborated ;

p 2: The operator preceding its~constituent equals-symbol is made

o possess the {routine which is the) value obtained in Step I.

{The formula (8.1) p ^ q, where ^ identifies the operator-defining

urrence of ^ in the operatlon-declaration

^ = (bool john, proo bool m~carthy) bool : (john I mooarth~ I false),

sesses the same value as it would if ^ identified the operator-

[ning occurrence of ^ in the operatlon-declaratlon

o ~ ^ = (boo___l a, b) ~ o l : (a I b I .false),

~pt, popsibly, when the elaboration of q involves side effects on that
~.}

8. Unitary expressions

8.0.1. Syntax

a) COERCETY unitary MODE expression :

COERCETY MODE fcrmary ; COERCETY MODE confrontation.

b) COERCETY MODE formary :

CO~CETY MODE ADIC formula ; COERCETY MDDE pr~.

c) hip FORCED MODE ADIC fonmAla : FORCED MODE ADIC formula.

d) hip FORCED MODE com~ontation : FORCED MODE ~ co-fY~-~

e) MODE confrontation : MODE assignation ;

MODE confc~nity relation ; MODE identity relation.

{Examples :

a) k + 7 ; z := 3 . 7 4 ;

b) k + 7 ; x ; n i ~ ;

c) i + j (inx :=i + j) ;

e) x := 3.74 ; ec :: e (see 11.11.q) ; val ~ :=: x or y }

{For for~las see 8. I, for primsries see 8.3, for assi~atlons see 8.

for conformity-relatlons see 8.9 and for identity-relatlons see 8.10. }

8. I. Formulas

8.1.1. Syntax

a)e COERCETY fonmn__a : COERCETY ADIC formula DELIVETY.

b) MODE ADIC formula : ADIC for~ala delivering a MODE.

c) PRIORITY formula DELIVETY : LMODE PRIORITY operand, procedure with s

LMDDE parameter and a RVODE parameter DELIVETY PRIORITY operator,

PNODE PRIORITY plus one operand.

d)o operand : MODE ADIC operand.

e) MODE PRIORITY operand :

adjusted MODE PRIORITY formula ; MODE PRIORITY plus one operand.

f) MODE priority NINE plus one operand : MODE monadic operand.

g) MODE monadlc operand-:

adjusted MODE monadlc for~la ; hip adjusted MODE prlmary.~

h) monadic formula DELIVETY : dep DELIVETY ; procedure with a RMODE

parameter DELIVETY monadic operator, RHODE monadic operand.

i) dep delivering a MODE :

value of symbol, peeled reference to MODE monadic formula ;

value of symbol, hip peeled reference to MODE primary.

j)~ depression : dep n~]VETY.

, 1 . 1 . continued

{Examples :

i x + ~ ; a + b $ -2 ; (priority 6, 6)

i b × (a > 0 I a I ~oto e~t) ; b $ -2; (priority 7,8)

> 0 I a I ~oto exit) ; ~.~

I val xm ; -2 ;

I valxx }

{For adjusted-formulas see 8.2.0.I .d, for hiP-adjusSed-primaries and

eled-primaries see 8.3.1.a and for peeled-formulas see 8.2.1.1.e.)

1.2. Semantics

A formula other than a depression is elaborated in the following steps :

ep 1: The formula is replaced by a copy of the routine possessed by the

constituent operator at its operator-defining occurrence {7.5.2, 4.3.2.b} ;

ep 2: The copy {which is now a closed-expression} is protected {6.0.2.d} ;

ep 3: The skip-symbol {5.~.2.ii} following the equ~s-symbol following

the textually first constituent formal-par~neter of the copy is

replaced by a copy of the textually first constituent operand of the

for~la, and if the constituent operator is not a moDnd~c-operator

then the skip-symbol following the equals-symbol following the

textually second constituent formal-parsmeter of the copy is replaced

by a copy of the textuallysecond constituent operand of the formula ;

ep 4: The elaboration of the copy is in~t~ated;~if this elaboration

is completed or terminated then the copy is replaced by the formula

before the elaboration of a successor is initiated.

A depression is elaborated in the following steps:

~p I: Its constituent peeled-formula or hip-peeled-primary is elaborated ;

mp 2: The value of the depression is a new instance of the value referred

to by the name obtained in Step I.

8.1.2. continued

$
{The following table s-~.arizes the operato~declared in

the standard-declsrati~ (1 0 . 2 . 0) .

1

minus

plus_

times

ODOr

modb

prus

2 3

v ^

priority

~ 5 6

¢ ~ ÷

>

>

7 8

÷

÷:

/

monadic

9

a~ ~n repr

lens short

odd sign

round entier

re im cow, u~

Observe that the value of (- 7 $ 2 + 4 = 5) and that of (4 - 7 $ 8 = S)

both are true, since the first mlnus-symbol is a monadic-operator

whereas the second i~dyadic.

Although the Syntax ~ the order in which formulas are elaborated,

parentheses may well be used to improve readability; e.g.

(a ^ b) v (-~a ^ -~b) instead of a ^ b v ~ U ^-~ b. }

8.2. Coercends

8.2.0.1. Syntax

a)e coercend : FORCETY CO~CEND.

b)o FORCED coercend : FORCED COERCEND.

c)

d)

e)

adapted COERCEND :

adjusted COEBCEND ; widened COERCEND ; arrs,Ted COERCEND.

adjusted COERCEND :

fitted COERCEND ; expressed COERC~2~D ; united COERCED.

fitted COERCEND : COERCEND ; called COERCEhD ; depressed COERCEND.

.2.0.1. continued

{Examples :

) m ; n := m ; x := n := m (in [] real z7 = (~ := n := m)) ;

) z ; ~ ; x (in union(hoofs ~roo real) bpr = z) ;

) 3.14 ; random ; x (in ~.~4 + random + z))

{For called-coercends see 8.2.1, for expressed-coercends see 8.2.2,

or depressed-coercends see 8.2.3, for united-coercends see 8.2.4, for

ddened-coercends see 8.2.5 and for arrayed-coercends see 8.2.6.)

{The coercion process may be illustrated by considering the analysis

,f rundom in rundom + z. According to I0.2.3.i, 10.2.0.a and 8.1.1.b,Cj

.~m + x is a real-priorlty-SIX-formula and random must therefore be

L real-priority-SIX-operaud, which may be produced as a procedure-

lellverlng-a-real-identifier (see I0.3.k and 7.4.1.a.) as follows:

~al-priority-SIX-operand,

~al-prlority-SEVEN-operand (8. I. 1 .~),

?eal-priority-EIGHT-operand (8. I. I .~),

~eal-prlorlty-NINE-operand (8.1. I .~),

~eal-prlority-NINE-plus-one-operand (8. I. 1 .~),

real-monadlc-operand (8. I. 1 .~),

~ip-adJusted-real-prlmary (8. I. I .~),

Rip-adjusted-real-cohesion (8.3. I. a),

adJ usted-real-cohesion (8.3. I. c),

fitted-real-coheslon (8.2.0. I .d),

c~1] ed-real-cohesion (8.2.0. I. e),

fit t~d-procedure-deliverlng-a-real-cohesion (8.2.1.1.b),

procedure-deliverlng-a-real-cohesion (8.2.0. I. e),

procedure-dellverlng-a-real-identlf~er (8.3. I .~).

A coercion is derived from the context and is passed on by the Syntax

until it meets a coercend (i.e., formula, cohesion or confrontation),

where it is activated (i.e., stripped, celled, expressed, depressed, united,

widened or arrayed). In the above example, the coercion was activated

by a called-cohesion which resulted in an unaccon~anled-call (8.2.1).

The relevant S~nantics appears in 8.2.1.2, where it is explained that

the routine denoted by rundom must be elaborated and deliver a real value

as the value of the left operand of the operator +. }

8.2.1. Unaccumpanied calls

8.2.1.1. Syntax

a)~ unaccompanied call : called COERCEND ; stripped COERCEND.

b) called MOIE FOR~ : fitted procedure delivering a MDDE POR~.

c) c~I led FORM : fitted procedure FORM.

d) stripped CO~RCEND : peeled procedure delivering a COERCED.

e) peeled COERC~2~D : COERCEND ; stripped COERCED.

{Examples :

b) rand~ (in rur~6m < .5) ;

c) stop (in ; stop ;) ;

d) z or II (in = or II :-- a) ;

e) x ; x or y (in x :=: z or y) }

8.2.1.2. Semantics

An unacc~ipan/ed-call is elaborated in the following steps :

Step I: It is preelaborated {1.1.6.f} and a copy is made of {the routine

which is) the resulting value ;

Ste 2 The unaccon~sr~ed-call is replaced by the copy obtained in Step 1

and t h e e l a b o r a t i o n o f t h e copy i s i n i t i a t e d ; ~ i f t h i s e l a b o r a t x o n xs

completed or terminated, then the copy is replaced by the tmcco~snled

call before the elaboration of a successor is initiated.

{See also 8.7.2, accompanied-calls. }

8.2.2. Expressed coercends

8.2.2. I. Syntax

a) expressed procedure delivering a COERCEND :

COEBCEND ; hip expressed COERCEND ; depressed COERCEND.

b) expressed procedure cohesion : cohesive statement.

{Examples :

a) 2 x ~mdx~m - 7 (i n p r o o real r7(8 x z~ndom - 7)) ;

b) zandvoort (in proe go to = nandvoort) }

{For cohesive-statements see 6.2.1.d. }

8.2.2.2. Semantics

An expressed-coercend is elaborated in the following steps :

Step I: A copy is made of it {itself, not its value} ;

, 2 . 2 . 2 . continued

bep 2: That routine {5.4.2} which is obtained from the copy by placing

an open-symbol before it and a close-symbol after it is the value of

the expressed-coercend; its mode is that obtained by deleting 'expressed'

and the terminal production of 'FOR4' from that notion as terminal

production of which the expressed-coercend is elaborated.

{If e7, e2 and e$ are label-identiflers, then the reader might

ecognise the effect of the declaration [] prcc switch = (eT, e2, e$)

nd the unltary-statement s~r~tch[i] ;

.owever, the declaration [7:$3 proc switch(e?, e2, e3)

s perhaps more powerful, since the assignation switch[2] := e7

.s possible.

~e elaboration of real ezpr(p I m] -z) yields the routine ((p I x I -4)),
,, ¢ o , j ~ l . ~ p , . , ~ ; o ~ ~ ~ rout!;,*

/hereas that of the expressed-~ (p] x i -z) yields either~(z) or~-h-e

'-m), depending on the value of p. Similarly, the elaboration of

~al ezpr(x := z + 7 ; y) yields the routine ((m := m + ? ; y)), whereas

;hat of the expressed-~ (m := m + 7 ; ~) yields, apart from a change

Lu the value of m, the routine (y). On the other hand, if C stands for

;.g. a formula (8.1) or cohesion (8.3.1 .b), then the elaboration of

Peal empr C and that of the expressed-coercend C both yield the routine

(c). }

~.2.3. Depressed coercends {"I ca'n't go no lower", said the

Hatter, "l'm on the floor as it is".

Alice's Adventures in Wonderland,

Lewis Carroll. }

8.2.3.1. Syntax

a) depressed COERCEND : fitted reference to COERCEND.

{Example :

a) z (in z $ 2) }

8.2.3.2. Semantics

A depressed-coercend is elaborated in the following steps:

Step I: It is preelaborated {1.1.6.f} ;

Step 2 : The value of the depressed-coercend is a new instance of the

value referred to by the name obtained in Step 1.

8.2.~.I. Syntax

a) united union of LMODESETY MODE HMODESETY mode 9DRM :

adjusted MODE ~DRM.

{ Example s :

a) one (in f + one, see 11.11.bb) ; b (in b + z, ibid.) ;

call (fc~:zsh, g) (i n 1 1 . 1 1 . a f) }

{In a range containing

union ib = (int~ bool), r b = (reals bool) ;

union rib = (real ~ ib~ ;

as declarations,

i_~ ib7(7), ib2(tz~) ; r b rb(tr~) ;

rib rib7(7), rib2(ib2), ribS(7.5), ribd(p i 7 I true)

are initialised declarations, but

rib ~bS(rb)

is not. }

8.2.5. Widened coercends

8.2.5.1. Syntax

a) widened LONGSETY real FOR4 : fitted LONGSETY integral FORM.

b) widened structured with a HEAL named letter r letter e and a ~AL

named letter i letter m FOR4 : fitted HEAL FOR4 ; widened ~AL 9D~4.

(Examples :

a, b) 7 (in cowl(7)) }

8.2.5.2. Semantics

A widened-coercend is elaborated in the following steps :

Step I: It is preelaborated {1.1.6.f} ;

Step 2: If the value yielded by Step 1 is an integer, then the value of

the widened-coercend is a new instance of that real number which is

equivalent to that integer {2.2.3.1.d}; otherwise, it is a new instance

of that structured {complex (10.2.5)) value composed of two fields,

whose field-selectors are letter-r-letter-e and letter-i-letter-m, whoa

modes are the same as that of the value yielded in Step 1 and which

are new instances of that value and zero respectively; its mode is that

obtained by deleting 'widened' and the terminal production of 'FORM'

from that notion as terminal production of which the widened-coercend

is elaborated.

,6. Arrayed coercends

.6.1. Syntax

~rrayed HEFETY row of MODE confrontation :

adapted HEFETY MODE confrontation.

~rrayed HEFETY row of MODE ADIC fornnla :

adapted HEFETY MODE ADIC formula.

~rrayed HEFETY row of MODE cohesion : adapted HEFETY MODE cohesion option.

[Examples :

:= 3.74 (in [7 : int n] real a = x := 3.74) ;

+ H (in [7 : ~nt n] real a = x + H) ;

; 7 .2 ; (3 .4 , 6 .6)

int m, 7 : int n] real x7 = case i in , 7.2, (3.4, ~.6) esae) ~ [7

,6.2. Semantics

~rr~ved-coercend is elaborated in the following steps :

? I: If it is not empty, then it is preelaborated, and Step 3 is

t .ken ;

? 2: A new instance of a multiple value {2.2.3.3} composed of zero

Lements and a descriptor consisting of an offset I and one quintuple

I, 0, I, I, I) is considered, and Step 6 is taken ;

? 3: If the value obtained in Step I is a name, then the value

~ferred to by this name, and, otherwise, the value itself obtained

Step I is considered; if the considered value is a multiple value,

ten Step 5 is taken ;

? 4: A new instance of a multiple value composed of the considered

~lue as only element, and a descriptor consisting of an offset I

Id one quintuple (I, I, I, I, I) is considered instead, and Step 6

3 taken ;

? 5: A new instance of a multiple value is created, composed of

le elements of the considered value and a descriptor which is a

)py of the descriptor of the considered value into which the

Iditional quintuple (I, I, I, I, I) {the value of the stride is

:relevant) is inserted before the first quintuple, and in which

L1 states have been set to 1, and this new multiple value is

~nsidered instead ;

8.2.6.2. continued

step 6 : The mode of the considered value is that obtained by delmting

'arrayed', the initial 'reference to', if any, and the terminal

production of 'PDRM' from that notion as terminal production of

which the arrayed-coercend is elaborated; if that notion begins with

'arrayed row of', then the value of the srrayed-coercend is the

considered value; otherwise, a name different from all other names

and whose mode is 'reference to' followed by the mode of the considered

value is created and made to refer to the considered value, and this

name is then the value of the arrayed-coercend.

8.3. Primaries

8.3. i. Syntax

a) COERCETY MOEE primary :
COERCETY CLOSED MODE expression ; COERCETY MODE cohesion.

b) MODE cohesion : MODE denotation ; MODE identifier ; MODE slice ;

nonlocal MODE generator ; MODE n~ned TAG selection ; MODE expression cal:

c) hip FORCED MODE cohesion :

FORCED MODE cohesion ; MODE hop ; MODE nlhil.

d) NONPROC hop : skip ; Junp.

e) reference to MODE nihil : nil symbol.

{Examples :

a) (a i b I false) ; sin(b- a) ;

b) true ; = ; m2[i, j] ; ccr~ol(7, O) ; father o~ algol ; sin(b - a) ;

c) x (in y := x) ; skip ; nil ;

d) skip ; Soto grenoble ;

e) nil }

{For collateral-expressions see 6.3. I. c, for closed-expressions see 6.4,

for conditional-expressions see 6.5, for denotations see 5, for identifiers

see ~.1, for slices see 8,~, for generators see 8.5, for field-selections

see 8.6, for expresslon-calls see 8.7, for skips see 6.2.1.~ and for Junps

see 6.2.1 .~. }

" the value, if any, possessed by its

~ining occurrence {4.1.2, 7.4.2. Step 5)$ {t~ v~Jua {% ~k~- ~

{The identifier pi as declared in the standard declaration I0.3.a

a real-identifier (and not a reference-to-real-identifier). Its

lue cannot be changed by assignment. In fact, in this context,

:= $ is not a production of 'assignation' (8.8). Similarly, the

entifler sin as declared in I0.3.g is a procedure-with-a-real-

rameter-deliverlng-a-real-ldentifler (5. ~. I. b) and

n := (real z) _real : (x - x ~ ~/6) is also not an assignation. The

itialised declaration real ppi(pi) creates a name possessed by the

!ference-to-real-ldentifier ppi, which name refers to the value of

,; moreover, another value may be assigned to that name.)

i The value of a skip is a new instance of some value whose mode is

~at obtained in the following steps:

;ep I : The mode obtained by deleting 'hop' from that notion ending

with 'hop' of which the skip is a terminal production is considered ;

~ep 2: If the considered mode begins with 'union of' then some mode

which does not begin with 'union of' and from which the considered

mode is united {2.2.4.1.h} is considered instead; the considered

mode is the mode of the value of the skip.

) A Jump {see also 6.2.2.b) does not possess a value.

) The elaboration of a rdhil involves no action; its value is a new

nstance of nil (2.2.3.5.a} whose mode is that obtained by deleting

nihil' from that notion ending with 'nihil' of which the nihll is a

erminal production.

(Skips play a role in the Semantics Of routine-denotatlons (5.~.2.ii,),

orn~las (8.1.2. Step 3) and accompanied-calls (8.7.2. Step 4).

oreover, they are useful in a number of progr,mmin~situations, like e.g.
v.13,

) Supplying an actual-parameter (7.4.1.b) or s % ~ @ (8.5,1.8)

whose value is irrelevant or is to be calculated later; e.g.

f(~, skip) where f does not use its second actual-parameter if the

value ef its first actual-parameter is positive; see also 11.11.ax ;

ii) Supplying a constituent unitary-expresslon of a collateral-expresslon,

e.g. ~1:3 real z7(8.74, skips 7.68, skip) ;

8.3.2. continued

iii) as a "dummy" statement (6.2.1 .d) in those rare situations where the

use 6f a cunpleter is inappropriate, e.g. I : skip) in I0.4.~;

A Jursp is useful as expression to terminate the elaboration of another

• expresslon when certain requirements are not met, e.g.

o~exit in y := i~ z ~ 0 then sqrt(x) els___~ goto exit ~,

~-~f in (j > a I f I j) from I0.2.3.r.

A nihll is useful psrticularly where structured values are connected to

one another in that a field of each structured value refers to another

one except for one or more structured values where that field does not

refer to anything at all; the value of such a field must then be nil, e.g

language(14, nil) in the examples of 8.6.1.

Since the value of a nihil, nil, is unique, an identlty-relation, like

father o~ father o~ algol := : nil

can be used to determine whether a field is nil or not. }

8.4. Slices

8.4. I. Syntax

a)
w

R~ETY ROWSETY ROWWSETY NONROW slice : HEFETY ROWS RO~ETY NONROW who

sub symbol, ROWS leaving R O ~ indexer, bus symbol.

b) NONHEF whole : NONREF primary ; called NONHEF primary.

c) reference to NONHEF whole : fitted reference to NONHEF primary.

d) row of ROWS leaving row of ROWSETY indexer :

trin~ner option, conma symbol, ROWS leaving ROWSETY indexer ;

subscript, corona symbol, ROWS leaving row of ROWSETY indexer.

e) row of ROWS leaving ~PTY indexer :

subscript, conma symbol, ROWS leaving ~4PTY inJdexer.

f) row of leaving row of indexer : trinmer option.

g) row of leaving ~4PTY indexer : subscript.

h) trimmer : ac~1 lower bound, up to symbol,

actual upper bound, new lower part option.

i) new lower part : at symbol, new lower bound.

j) new lower bound : hip fitted integral formary.

k) subscript : hip fitted integral formary.

1)o trimscrlpt : trinmer option ; subscript.

8.4.1. continued

{Examples:

a) xl[i] ; x2[i, j] ; x2[i] ; xT[2:n:7] ;

b) (7 , 2, $) (in (7 , 2, 3)[i]) ;

c) x7 ; x2 ;

d) ~:n:7, j ; i , 2:n:7 ;

e) i , j ;
f) ~:n:7 ;

g) i ;

h) 2:n:7 ;

i) :7 ;

j) 7 ;

k) i }

{For primaries see 8.3 and for hlp-fltted-formaries see 8.0.I.b. }

{In rule a, 'ROWS' reflects the number of trlmscrlpts in the slice,by

'ROGER" the number of these which are trln3rer-optlons and ' R O W '

the number of 'row of' not involved in the indexer. In the slices

x2[i, j], x~[i, 2:], ~2[i], these numbers are (2,0,0), (2,1,0) and (1,0,1)

respectively. Because of rules h and 7.1.1.r, s, 2:3:7 ; 2:n ; ~: ; :~

and ::2 are tri~ners, while rules d aud f allow trimmers to be omitted. }

8.4.2. Semantics

A slice is elaborated in the following steps:

Step I: Its constituent whole, and all constituent subscripts, strict-

lower-bounds, strict-upper-bounds and new-lower-bounds of the constituent

indexer of the slice are elaborated collaterally {6.3.2.a} ;

Step 2: That multiple value which is, or is referred to by, the value of

the whole, is considered, a copy is made of its descriptor, and all

the states {2.2.3.3.b} in the copy are set to I ;

Step 3: The trimscript following the sub-symbol is considered, and a

pointer, "i", is set to 1 ;

Step ~: If the considered trimscript is not a subscript, then Step 5 is

taken; otherwise, letting "k" stand for its value, if i i ~ k~ u i, then

the offset in the copy is increased by (k - i i) × d i, the i-th quintuple

is "marked", and Step 6 is taken; otherwise, the further elaboration

is undefined ;

8.4.2. continued

Step 5: The values "i", "u" and "I'" are determined from the considered

trlmscript {trlm~r-option} as follows:

if the considered trlmscript contains a strlct-lower-bound (strict-

upper-bound), then 1 (u) is its value, and otherwise 1 (u) is li(ui) ;

if it contains a new-lower-bound then l' is its value, and otherwise "

l' isl ;

if now i i ~ 1 and u -< ui, then the offset in the copy is increased by

(1 - i i) × d i, and then i i is replaced by l' and u i by (l' - l) + u;

otherwise, the further elaboration is undefined ;

Step 6: If the considered trimscript is followed by a cu~-symbol, then

the trin~3cript following that conmla-symbol is considered instead, i is

increased by I, and Step ~ is taken; otherwise, all quintuples in the

copy which were marked by Step 4 are removed, and Step 7 is taken ;

Step 7 : If the copy now contains at least one quintuple, then the

multiple value composed of the copy and those el~nents of the considerec

value which it describes and whose mode is that obtained by deleting

'slice' and the initial 'reference to', if any, from that notion ending

with 'slice' of which the slice is a terminal production, is considered

instead; otherwise, the element of the considered value selected by

that index equal to the offset in the copy is considered instead ;

Step 8: If the value of the whole is a name, then the value of the slice

is a new instance of the name which refers to the considered value,

and, otherwise, is a new instance of the considered value itself.

{A trimmer restricts the possible values of a subscript and changes

its notation: first, the value of the subscript is restricted to run

from the value of the strict-lower-boun~d up to that of the strlct-upper-

bound, both given in the old notation; next, all remaining values of

that subscript are changed by adding the same amount to each of them,

such that the lowest value then equals the value of the new,lower-

bound. Thus, the assi~t!ons

y717 : n - ;] := x7[,9 : n :~ 7~3 ; ~ l [n] := x 7 1 7] .; x7 := y l

effect a cyclic permutation of the elements of xT. }

• Generators

.I. Syntax

{And as imagination bodies forth

The forms of things unknown, the poet's pen

Turns them to shapes, and gives to airy nothing

A local habitation and a name.

A Mids~,~er-night's Dream, William Shakespeare.)

, generator : local FDDE generator ; nonlocal MODE generator.

local MODE generator : local symbol, nonlocal MODE generator.

nonlocal reference to MODE generator :

actual MODE declarer, MODE initialisation option.

MODE InitJs]Isation :

hip adapted CLOSED MODE expression ; MODE structure pack.

structured with FY~nS and a F~D structure :

structured with F~DS structure, comma symbol,

structured with a F~h structure.

structured with a MODE ns~ed TAG structure : 110 ~E v~zl~.
IloPE v . l ~

~ip adapted unitary MODE expression ; MODE structure pack.

{Examples :

loo[I : ~3 real (1.~, 3.4, ~.6) ;

person ; oov~I(1, O) ; oov~lCz) ; stringC"abs") ;

(and in the context of

str~ut nest = (int a, struct(real b, bool c) d))

nest(7, (.~.~, t rue)) ;

(~) ; (1, O) ;

7~ 0 ;

I ; (2 . .~ t rue) }

; .2 . S~aa~tics

A given structure is elaborated in the following steps:

~p I: All constituent e ~ ~ ,n~ ~tr~t~u~ of the given structure

~e elaborated collaterally {6.3.2.a} • ~*-* ~ ~r~,- ~

~p 2: The values obtained ~n Step 1 ere made, in the given order,

;o be the fields of a new instance of a structured value {2.2.3.2} whose

~de is obtained by deleting 'structure' from that notion ending with

structure' of which the given structure is a terminal production, and

8.5 • 2. continued

this structured value is the value of the given structure.

b) A generator is elaborated in the following steps:

Step 1 : Its constituent actual-declarer {7. 1.2.c} and initialisation,

ally~t "" if any, are elaborated collater ~^ -'-~, v~ v, ~ ~,

Step 2: If there is an Irdtialisation. then its value is assigned

{8.8.2.C} to the value {name} of the actual-declsrer ;

Step 3: The value of the generator is the value {name} of the actual-

declarer.

c) The scope {2.2.4.2} of the value of a local-generator is the sm-llex

range containing that generator; that of a nonlocal-generator is the

progr~n.

{Extension 9.2.a allows

ref real. x = loo real

to be ~ e m ~..plac~A ' ~

real x.

The closed-expression

Cre~ real xx ; (ref real .x : real/pi) ; xx := x) ; ~ = p/)

possesses the value true, but the closed-expression

(ret, r e a l ~ ; (real x@i) ; xx : : x) ; xx:pi)

possesses an undefined value since the asslgnation ~ :: ~

in . L~ violates the condition on scopes (8.8.2.~. Step I

The closed-expression

((ref real ~ ; real xCpi) ; o~ := x) = pi)

however, has the value true. }

{Though the value of the offset in the descriptor of a multiple

value is always initially I, this may be changed by the action of a

3.5.2. continued 2

The generator

[-2:$, 1: , 0:4] real

~ould result in the name of a multiple value, with undefined elements,

~hose descriptor quintuples have the values

i i i u i d i s i t i

1 - 2 3

2 1 • ?

3 0 4

• e fact that t 2

its value in the

? 1 1

~g" 1 .o

= 0 means that the second upper bound is virtual and

descriptor may be changed by assignment (8.8.2.~). }

~.6. Field selections

I. 6. I. Syntax

L) REFETY FI~D selection : FTETD selector, of symbol,

REFETYstructuredwithLF~USAFFr~DRFl~OSETYwhole.

(Examples: The following examples are assumed in a range with the

[eclarations

struat lanQuo~e = (int agej re~ lo~guage father)

language algoZ(70, language(74, ni l)) ;

Z ~ u ~ e v~l = Zanauaae(a, a l g o l) ~

~) age o~ pit ; father o~ algol }

{Rule a ensures that the value of the whole has a field selected by

;he field-selector in the field-selectlon (see 7.1.1.e, f, g, h, and the

~emarks below 7.1.1. and 8.6.2). The use of an identifier which is the

~ame sequence of symbols as a field-selector in the same range creates

~o ambiguity.

8.6.1. continued

Thus age o~ algol :-- age is a (possibly confusing to the human)

assignation if the second occurrence of age is also an ~apted-unitary-

integral-expression. }

8~6.2. S~ntics

A field-selectlon is elaborated in the following steps

Step I: Its constituent whole is elaborated, and the structured value

which is, or is referred to by, the value of that whole is considered ;

Step 2: If the value of the whole is a name, then the value of the

field-selection is a new instance of the name which refers to that flel~

of the considered structured value selected by the constituent field-

selector; otherwise, it is a new instance of the value which is that

field itself.

{In the examples of 8.6.1, age ~ algol is a reference-to-integral-

named-/ageS-selection, and, by 8.3.I.a, b, c, a reference-to-integral-

prS~ary, but age _~ pl7 is an integral-nsmed-[age]-selectlon and an

integral-primary. (Certain pieces of text within a notion have a

prolixity out of proportion to the information they convey.

Thus [age] stands for 'letter-a-letter-g-letter-e' and

[language] is likewise short for 'structured-with-a-integral-nsm~d-

[age]-and-a-reference-to-[lar~age]-named-[father] '. That certain notions

have infinite length is clear; however, the computer can recognise them

without full examination ~e--~-.~v~.)

It follows that age ~ algol may appear as a destination (8.8.1 .b)in

an assignation but age o~ pl7 may not. S~m~larly, algol is a refereP~e-

to-[language]-prlmsry but pl7 is a [lar~uage]-prlmary and no assi~ent

may be made to pl7.

The selection father ~ pl7, however, is a reference-to-[language]-

nsmed-[father]-selection, and thus a reference-to-[language]-prlmary

whose value is the name denoted by algol. It follows that the identity-

relation father ~ pl7 :=: algol possesses the value true. If fcr~her

_~ pll is used as a destination in an assignation, ~ there is no change in

the name which is a field of the structured value denoted by piT, but

there may well be a change in the [l~e] referred to by that name.

8.6.2. continued

By similar reasoning and because the operators r_e and ~_ denote routines

(I0.2.5.b, c) which deliver values whose mode is 'real' and not 'reference.

to-real', re ~ z :=~/m w is an assignation, but __re z :=__ira w is not. }

8.7. Accompanied calls

8.7.1. Syntax

a)* acccmpanied call : CLAUSE call.

b) MODE expression call :

fitted procedure with PARAMETERS delivering a MODE primary,

actns] PARAMETERS pack.

c) statement call : fitted procedure with PARAMETERS primary,

actual PARAMETERS pack.

{Examples :

b) S~ISon(m, (in~ j) real : xT[~]) (in the scope of

proo so~elson = (int n, proo(int) real f) real :

begin long real s(lon~ 0) ;

for i to n do s ~lus len~ f(i) ~ 2 ;

short long sqrt (s) end) ;

C) set r(~om(x) ; (see I0.3.~) }

{For actual-parameters see 7.4.1.b and for fltted-prlmaries see

8.3.1 .a. See also unacccmpanled-calls, 8.2.1. }

8.7.2. Semantics

An accor~panled-call is elaborated in the following steps:

Step I: Its constituent fltted-prlmary is elaborated and a copy is made

of {the routine which is} its value ; /

Step 2: The accompanled-call is replaced by that copy ;

8.7.2. continued

Step 3: That copy {which is now a closed-clause) is protected {6.0.2.d} ;

Step 4: The copy as modified by Step 3 is further modified by replacing the

sklp-symbols following the equals-symbol following the constituent

formal-parameters of the copy {5.4.2.ii} in the textual order by the

constituent actual-parameters of the accempanied-call taken in the

same order ; ~$ vaI~7, ~ ~G~ £~% oF ~i~ ~¢~o~.~:,~ c~|I~

Step 5: The elaboration of the copy is initiated;~if this elaboration is

completed or terminated, then the copy is replaced by the accunpanied-

call before the elaboration of a successor is initiated.

{The expression-call Sar~lson(m, (int j) real : z;[j]) as given in the

examples of 8.7.1, is elaborated by first considering (Step I) the closed-

expression

((int n = skip, proc(int) real f = skip) ;

b~in lon~ real s(long O) ;

for i to n do s plus leng f(i) ~ 2 $

short long sqrt(s) end).

Supposing that n, f, s and i do not occur elsewhere, this closed-

expression is protected (Step 3) without further alteration. The actual-

parameters are now inserted (Step ~) yielding the closed-expresslon
• /

((int n = m, proc(int) real f = (int j) real : zT[j])

begin long real s (long O) ;

for i to n do s plus few f(i) $ 2 ;

sho~. long sqrt(s) end) ,

and this closed-expression is elaborated (Step 5). Note that, for the

titration of this elaboration, n possesses the same integer as that referred

to by the name possessed by m, and f possesses the same routine as that

possessed by th~ routlne-denotation (in__.t j) real : roT[j]. During the elaboratio*

of this and its imM~ nested closed-clauses (9.3), the elaboration

of f(i) itself involv~s the elaboration of the closed-expresslon

((int j = i) ; xT[j']), and, within this inner closed-expresslon, the first

occurrence of~ possesses the same integer as that referred to by the name

possessed by i. }

8.8. Assignations

8 . 8 . 1 . Syntax

a) MODE assignation :

reference to MODE destination, becomes symbol, MODE source.

b) reference to MODE destination : peeled reference to MODE formary.

c) MODE source : hip adapted unitary MODE expression.

{Examples :

a) z := 0 ; z := y; z :=~random ;mx := m ; val zm := 7.2 ;

z l [i] := y T [i] := (i = j I 7 I o) ; (random < .6 I = I y) := 7]

x or Zl := 3.4 }

{For peeled-fornBries see 8.0.1 .b and for hip-adapted-lmitary-

expressions see 8.0. I.a }

8.8.2. Semantics

a) When a given instance of a value is superseded by another instance of

a value, then the name which refers to the given instance is caused to

refer to that other instance, and, moreover, each name which refers to an

instance of a multiple or structured value of which the given instance is

a component {2.2.2.k} is caused to refer to the instance of the multiple

or structured value which is established by replacing that component by

that other instance.

b) When an element (a field) of a given multiple (structured) value is

superseded by another instance of a value, then the mode of the thereby

established multiple (structured) value is that of the given value.

c) A value is assigned to a name in the following steps:

Step I: If the given value does not refer to an element or subvalue of a

multiple value having one or more states equal to zero {2.2.3.3.b},

if the outer scope of the given n~ is not larger than the i ~

scope of the given value {2.2.4.2.c, d}, and if the given name is not

nil, then Step 2 is taken; {otherwise, the further elaboration is

undefined ; }

Step 2: The value referred to by the given name is considered; if the

mode of the given name does not begin with +reference to union of' and

the considered value is a multiple value or a structured value, then

Step 3 is taken; otherwise, the considered value is superseded by a new

instance of the given value and the assignment

8.8.2. continued

Step 3: If the considered value is a structured value, then Step 5 is

taken; otherwise, applying the notation of 2.2.3.3.b to its descriptor,

then for i = I, ..., n, if s i -- 0 (t~-- 0), then i i (ui) is set to the

value of the i-th lower bound (i-th upper bound) in the descriptor of

the given value; moreover, for i = n, n-1, . .., 2, the stride di_ 1 is

set to (ui-li+1) x di; finally, if some s i = 0 or t i -- 0, then the

descriptor of the considered value, as modified above, is made to be

the descriptor ofa new instance of a multiple value which is of the

same mode as the conszdered value, and this new instance~is considered

instead ;

Step 4: If for all i, i = I, ..., n the bound i i (ui) in the descriptor of

the considered value, as possibly modified in Step 3, is equal to I i (ui)

in the descriptor of the given value, then Step 5 is taken {; otherwise,

the further elaboration is undefined) ;

Step ~5: .Each element +(fiel.d) of the ~ value is zu~crzc~_cd ' z y a no++

~ e - e 9 the corresponding element (field) of the g~m value and the

assignment ~ . [r fL . . ++~er in which +he++ =l~+,t+ (f<ola~) ?re -

OIi~,Ci &&if+CA ++ " "" =

d) An assignation is elaborated in the following steps%

Step I: Its constituent source and destination are elaborated collaterally

{6.3.2.a} ;

Step 2: The value of the source is assigned to the value {name) of the

destination ;

Step 3: The value of the assignation is a new instance of the value of the

source.

(Observe that (x, y) := (7.2, 3.4) is not an assignation, since (x, y)

is not a destination; indeed, the mode of the value of a collateral-

e~q0ression (6.3. I.c) does not begin with 'reference to' but with 'row of'. }

8.9. Conformity relations {I would to God they would either

8.9. I. Syntax

a) boolean conformity relation :

conform, or be more wise, and not

be catched:

Diary, 7 Aug. 1664, Samuel Pepys. }

peeled reference to LMODE formary, conformity relator, RMODE formary.

b) conformity relator :

conforms to symbol ; conforms to and becomes symbol.

9. 1. continued

{ Examples :

eo :: e (see 11.11.q) ; et~ ::= e (see 11.11.r) ;

: : ; : : = }

{For peeled-forHmries and fornmries see 8.0.1.b. }

9.2. Semantics

conformity-relatlon is elaborated in the following steps:

;ep I: Its constituent peeled-formary and forHmry are elaborated

collaterally {6.3.2.a} and the value of that fornBry is considered ;

ep 2: If the mode of the value of the peeled-fozmBry is 'reference to'

followed by a mode which is or is united from {2.2.~.I.h} the mode of

the considered value, then the value of the conformity-relation is true

and Step ~ is taken; otherwise, Step 3 is taken ;

;ep 3 : If the considered value refers to another value, then this other

value is considered instead and Step 2 is taken; otherwise, the value

of the conformlty-relatlon is false and Step ~ is taken ;

;ep ~: If the constituent conformlty-relator is a conforn~-to-and-

becomes-symbol and the value of the conformity-relatlon is true, then

the considered value is assigned {8.8.2.c} to the value of the peeled-

fornmry.

{Observe that if the considered value is an integer and the mode of the

¢lue of the peeled-formary is 'reference to' followed by a mode which is

is united from the mode 'real' but not from 'integral', then the value

the conformlty-relation is false. Thus, in contrast with the assignation,

automatic widening from integral to real takes place. }

.10. Identity relations

.I0.1. Syntax

) boolean identity relation : peeled reference to MOEE formary,

identity relator, hlp peeled reference to MODE formary.

) identity relator : is symbol ; is not symbol.

I !10.1. continued

, {Examples :

~ :=: yy ; ~l~ :=: xory ;

~) :=: ; :4: }

{For peeled-fonnarles and hlp-peeled-for~rles see 8.0.1 .b. }

1.10.2. Semantics

identlty-relation is elaborated in the following steps:

;tep I: Its constituent peeled-formaz~j and b_ip-peeled-formar~j are elabora

collaterally {6.3.2.a} ;

~tep/2: If the constituent identity-relator is an is-s~nbol (is-nob-s~mbc

then the value of the identity-relatlon is true (false) if the values

{nsuaes} obtained in Step I are the same and false (true) otherwise.

{Assuming the assis~ation ~c := ~ := x, the value of the identity-

~elati?B - F~ :=: ~y is false because ~ and yy, though of the same mode,

1o not possess the same name. The value of the Identlty-relatlon

~u~ ~c :=: m or y has a I/2 probability of being true because the value

;~ssessed by vu~ ~c is the name possessed by x, and the routine possessed

~ ~y = or y (see 1.3), when elaborated, yields either the name possessed

' by z or, with equal probability, the name possessed by y. In the ider~it3

relation, the progra~,er is usually asking a specific question concerning

~ames and thus the level of reference is of crucial importance. Since no

~utomatic depressing of the for~vies is provided, it must be explicitly

specified, if necessary, through the use of val or an equivalent device.

~hus, ~c :=: x is not an identlty-relation but val ~c := x and

(~c := ~) :=: z are. On the other hand, unaccc~npanied procedures will b~

~alled automatically so that x :=: x or y is also an identity-relation.

)bserve that the value of the formula 7 = 2 is false, whereas 7 :=: 2

Ls not an Identlty-relatlon, since the values of its for~ar~es are not

lames. Also,

£2d d£ : = : £5d£
ks not an identity-relation, whereas

£2d d£ = £5d£,
is a for~a, but involves an operation which is not included in the

standard-declarations. }

9. Extensions

a) An extension is the insertion of a comment between two symbols or the

replacement of a certain sequence of symbols, possibly satisfying certain

~ , by another sequence of symbols.

b) No extension may be performed within a comment {B.0.9.b} or a row-of-

character-denotation { 5 .S } •

c) Some extensions are ~ in the representation language, except

that

A stands for a unltary-expression (Chapter 8},

B for a unitary-expression,

C 7 and C~ for unitary-clauses {6.2.1.a, 8},

D for the standard-declarations {2.1 .b, 10} if the extension is performed

outside the standard-declarations and otherwise for the empty sequence

of symbols,

for a serial-expression (6.1.1.b},

F for a unltary-expression,

G for two or more unitary-clauses separated by cc~mB-symbols,

for a declarer {7. I },

• , J, K and Z for identifiers {h. I },

Z for zero or more long-symbols,

M for an identifier,

N for an indication (4.2 }, ~

0 for zero or one identifiers,

P for a tail {7.1.1.w, x, z},

for a choice-clause {6.5.1.b},

R for a routine-denotation (5.4),

for a unltary-stat~nent {6.2.1 .a},

T for a unitary-expression,

for zero or one virtual-declarers {7.1.1.b},

V for a virtual-declarer,

W for a unitary-expression, and

Z for a form~l-declarer {7.1 .I .b} all of whose fonnal-row-of-~ewe~.~p~Ae~

(7.1.~.~) are empty.

y ~ t , d .

9.1. Comments {A source of innocent merriment.

Mikado, W.S. Gilbert. }

A comment {3.0.9.b} may be inserted between any two symbols {but see 9.b.}.

(e.g. (m > n I m J n) may be :~ittzn v~r1~c J~ by

(m > n J m c the larger of the two c J n). }

9.2. Contracted declarations

a) ~ ZI = loc H where Z and H specify the same mode {7.1.2.a} may be

replaced by K~.

(e.g. re~ r e a l x = loc r e a l may be ~ . ~ r e a l x and
~91ac.a~ by

r~ bool p = loc boolCtrue) may be ~ bool p{~rue). }

b) mode N = struct may be replaced by etruct N = and mode N = union may

be replaced by union N = .
\

{e.g. mode c o w l = s t ~ c t (r e a l re , ~) (see a lso 9 .2 .c) may b e ~ ~ 7

struot oo~l = (real re, ira). }

c) If a given unitary-declaration (formal-parameter {5.4.1.e}, f/eld-

declarator {7. I. I .g}) and another un/tary-declaratlon (formal-par~neter,

field-declarator) following a comma-symbol following the given unitary-

declaration (formal-parameter, field-declarator) both begin with an

occurrence of the mode-symbol, of the structure-symbol, of the union-of-

symbol, of the priorlty-symbol, of the operation-symbol, of one same act,~1-

declarer, or of one same formal-declarer, then the second of these

occurrences may be omitted. ?~p|~,~

(e.g. real xj real y(7.2) may be ~ real xj y(7.2), but

real x, real ~ = 7.2 may not be Q~J~tA~ real x, y = 7.2, since the first

occurrence of real is an actual-declarer whereas the second is a fornB1-

declarer.

Note also\that mode b = bool~ mode r = real may be ~~fft~(*~ by

mode b = bool~ E = real, etc. }
J

d) If a collateral-declaration {6.S.1 .a} does not begin with a paraLlel-

symbol, is not a constituent unitary-declaration of another collateral-

declaration, none of its constituent unitary-declarations is a collateral-

declaration, and only its first constituent unitary-declaration (after

application of 9.2.c} begins with an occurrence of a mode-symbol,

structure-symbol, union-of-symbol, priority-symbol, operation-symbol or

declarer, then its first open-syn~ol and last close-symbol may be omitted.

{e.g. (real x, ~, z) may be ~ r e a l ~, ~ ~. }

9.2. continued

e) proc PI = R may be replaced by proo I = R.

f) o~ PN -- R may be replaced by ~ N = R.

g) proo PO(R) may be replaced by proc O(R).

{ e . g . proc(ref int) incr = (re~ int i) : (i

pro° incr = (re~ int i) : (i := i + ~),
~r ~*,-~A

~(re~ int) int deer = (re~ int i) int : (i := i - 7) may be

o~ deer = (re~ int i) int : (i := i - ~) and

proc(real) int p((real x) int : (round x)) , obtained from

ref ~roc(real) int p = loc ~ro°(°)re 1 int((real x) int : (round x))

a ~- • , may be ~ pro° p((real x) int : (round xJ). }

9.B. Repetitive statements

a) The unitary-statement

be~in(int J(F), int K = B, Z = T) ;

M : i~B(K > 0 I J <- Z I: K < 0 I J_> Z [true) then

int I = J ; (W I S ; (DJ := J + K) ; goto M)--

.end ,

where J, K, L and M do not occur in D, W or S, and where I differs from

J and K, may be replaced by ~or I ~o~ F b~ B to T while Wdo S ,

and if, moreover, I does not occur in W or S, then for I r~ may be

replaced by ~om.

b) The unitary-statement

be~in(int J (F) , int K = B)

M : (int I = J ; (W J S ; (DJ := J +K) ; oHM))

end

where J, K and M do not occur in D, W or S, and where I differs from J

and K, may be replaced by for I ~o~ F b~ B while W do S ,

and if, moreover, I does not occur in W or S, then for I ~om may be

replaced by ~rom.

c) ~ro~ 7 b~ may be replaced by b~.

d) b~ 7 to may be replaced by _~, and b~ 7 while may be replaced by w~ile.

e) while true do may be replaced by ~.

{e.g. ~ i ~_~ 7 . ~ I t o n while true do = := x + a may be ~aLt.t~
to n do ~ := x + a .

:= i + 7) may b e g " - -

. 3 . c o n t i n u e d

o te t h a t to 0 do S and ~ i l e . false do S do n o t cause S t o be e l a b o r a t e d

t a l l , whereas d__o S c a u s e s S t o be e l a b o r a t e d r e p e a t e d l y u n t i l i t i s

s r m i n a t e d or i n t e r r u p t e d . }

.~ . C o n t r a c t e d c o n d i t i o n a l c l a u s e s {The f l o w e r s t h a t bloom i n t h e s p r i n g ,

Tra l a ,

Have n o t h i n g t o do w i t h t h e c a s e .

Mikado, W.S. Gilbert.

) else ~ ~ ~ ~ may be replaced by els£ ~ ~ and

then i ~ Q ~ J~. may be replaced by ~hef Q ~ .

{e.g. p then prinoet eUe q then grenoble else zandvoort ~
be ~ v ~ p l ~ c ~ J b 7

i~ p then prinoeton

els~ q then grenoble else zandvoort

(p [princeton [: q [grenoble [zandvoort).

my more examples are given in 10.5. }

) (i n t I = A ~ ~ DI = 7 then C 7 e l s £ D(.r = 2 I t rue) then C~ f !) ,

~ere I does not occur in 07, C 2 or D, may be replaced by

oase A in C7, C 2 esa°.

) (int I = A ~ i~OI = I then C 7 else °ase(OI - 7) in G esac~),

lere I does not occur in C 7, D or G, may be replaced by

case A i_n CTj G esa°.

{Examples of the use of such "case" clauses are given 11.11.w, ap. }

5. Complex values

zlCZ r e a l Z = A, J = s ; (DZ_ °omplC_T, j))),

lere I and J do not occur in D, may be replaced "by

L!sJ.

I0. Standard declarations

a) A "standard declaration" is one of the constituent declarations of the

standard-declarations {2.1.b} (; it is either an "environment enquiry"

supplying information concerning a specific property of the implementation

(2.3.c), a "standard priority" or "standard operation", a "standard

mathematical constant or function", a "synchronization operation" or a

"transput declaration"} .

b) A representation of the standard-declarations is obtained by altering

each form in I0.I, I0.2, I0.3, I0.~ and I0.5 in the following steps:

Step I: Each sequence of symbols between ~ and ~ in a given form is

altered in the following steps:

Step I. I : If D occurs in the given sequence of symbols, then the given

sequence is replaced by a chain of a sufficient number of sequences

separated by conlna-symbols; the first new sequence is a copy of the

given sequence in which copy D is deleted; the n-th new sequence,

n > I, is a copy of the given sequence in which copy D is replaced

by a sub-symbol followea by n-2 conma-symbols followed by a bus-

symbol ;

Step 1.2: If, in the given sequence of symbols, as possibly modified

in Step 1.1, Lint (L real or L c~) occurs, then that sequence

is replaced by a chain of int lengths {10.1 .a} (real lengths {10.1 .c})

sequences separated by conma-symbols, the n-th new sequence being a

copy of the given sequence in which copy each occurrence of L(L)

has been replaced by (n-1) times long(long) ;

Step 2: Each occurrence of $ and ~ in a given form, as possibly

modified in Step I, is deleted ;

Step 3: If, in a given form, as possibly modified in Steps I and 2,

Lint (L real or L compl, L bits or Labs, both L int and L real or

both Lint and L coup1) occurs, then the form is replaced by a sequence

of int lengths {I0. I .a} (real lengths {I~i~I.c} , bits widths { I 0 . I . f } ,
the minimum of int lengths and real leng~s) new forms; the n-th new

form is a copy of the given form in which copy each occurrence of

Z(L, K, S) is replaced by (n-l) times long(l~, lens, short) ; /

Step 4: If p occurs in a given form, as possibly modified or made in the

Steps above, then the form is replaced by four new forms obtained by

replacing p consistently throughout the form by either - or + or × or / ;

10. continued

Step 5: If Q occurs in a given form, as possibly modified or made in

the Steps above, then the form is replaced by four new forms obtained

by replacing Q consistently throughout the form by either minus Or

p~ or t~es or over ;

Step 6: If R occurs in a given form, as possibly modified or made in th~

Steps above, then the form is replaced by six new forms obtained by

replacing R consistently throughout the form by either < or ~ or = or

or ~ or > ;

Step 7: Each occurrence of F in any form, as possibly modified or made

in the Steps above, is replaced by a representation of one same

terminal production,of a terminal production of 'ALEPH' {I .2.5.d,

5 . 5 . 1 , , 6 . a } ;

Step 8: If, in some form, as possibly modified or made in the Steps

above, % occurs followed by the representation of an identifier (field.

selector, indication), then that occurrence of % is deleted and each

occ~rence of the representation of that identifier (field-selector,

indication) in any form is replaced by the representation of one same

identifier (field-selector, indication) which does not occur elsewhere

in a form, and Step 8 is taken ;

Step 9: If a representation of a conment occurs in ~ny form, as possibly

modified or made in the Steps above, then this representation is

replaced by a representation of an actual-declarer or closed-clause

suggested by the comment ;

Step 10: If, in any form, as possibly modified or made in the Steps

above, a representation of a routlne-denotation occurs whose elaboratic

involves the manipulation of real numbers, then this denotation may

be replaced by any other denotation whose elabo~ration has approximatel~

the same effect {The degree of approximation is ~ in this

Report (see also 2.2.3.1.c).} ;

Step 1 I: The standard-declarations are that serial-declaration followed

by a go-on-symbol whose representation is the same as the sequence of

all the forms, as possibly modified or made in the Steps above.

{The declarations in this Chapter are intended to describe their

effect clearly. The effect may very well be obtained by a more efficient

method. }

I 0. I. Environment enquiries

a) int int lengths = c the number of different lengths of integers ~ ;

b) L in__~ L max int = c the largest L integral value _o ;

c) int real lengths =

_c the number of different lengths of real numbers _c ;

d) L real L max real =_c the largest L real value o_ ;

e) L real L small real = c the smallest L real value suoh that both

_L7 + L small real > L; and L7 - L small real < L_7 ~ ;

f) int bits widths =

_c the number of different widths of standard bit rows ~ ;

g) int L bits width = ~ ~ $~. L ~.

c the number of bits in a standard L bit row/~{10.2.6.a}~

h) o~ abs = (char a) int :

_c the integral equivalent of the character 'a' c ;

i) ~ repr = (int a) char :

c that ~haracter 'x', if it exists, for which abs x = a c ;

10.2. Standard priorities and operations

10.2.0. Standard priorities

a) priority minus = 7, plus = 7, times = 7, over = 7, rood = I, pru8 = 7,

v = 8, ^ = 3, = = 4j # = 4, < = 5, -< = 5, a = 5, > = 5, - = 6,

+ = 6 , x = 7 , ÷ = 7 , ÷: = 7 , / = 7, 4 = 8 ;

10.2.1. Operations on boolean operands

a) ~ v = (bool a, b) bool : (a I true I b) ;

b) ~ ^ = (bool a, b) bool : (a I b I false) ;

e) o~-~= (bool a) boo l : (a I false I true) ;

d) o~ = = (bool a, b) boo l : ((a ^ b) v (-~a ^-~ b)) ;

e) o~ ~ = (bool a, b) bool : (-~(a = b)) ;

f) o~ abs = (bool a) int : (a I 7 I O) ;

10.2.2. Operations on integral operands

a) ~ < = (Lint a, b) bool : c true if the value of 'a' is smaller than
/

that of tb' and false otherwise c ;

b) o~ ~ = (L int a, b) boo l : (-~(b < a)) ;

c) o~ = = (L int a, b) bool : (a ~ b ^ b _< a) ;

d) o~ # = (L int a, b) bool : (-~(a = b)) ;

I O. 2.2. continued

e) 915 -> = (Lint a, b) bool : (b ~ a) ;

f) ~ > = (Lint a, b) bool : (b < a) ;

g) ~- = (L int a, b) Lint :

c the value of 'a' minus that of 'b' c_ ;

h) o~ - = (Lint a) L int : (L_O - a) ;

i) ~ + = (L in_t a, b) L_ int : (a - - b) ;

j) ~ + = (Lint a) Lint : a ;

k) o~ ab8 = (L int a) L_ in_~ : (a < L_O I -a I a) ;

l) ~x = (Lint a, b) Lint : (L int s(LO), i(abs b) ;

while i z LI do(s := s + a ; i := i - L_I) ; (b < L_O I -s I s)) ;

=) ~ ÷ = (L int a, b) Lint :

(b # L_O I Lint q(L_O), r(ab8 a) ;

while(r := r - abs b) -> LO do q := q + L I ;

(a < LO ^ b -> LO v a ~ LO ^ b < LO I -q I q)) ;

n) ZZ = eL_ __int a, b) L int : (a 4 a ÷ b) ;

o) o l / = (L_int a, b) L real : (L real (a) / L real (b)) ;

p) o~ 4 = (Lint a, int b) L int :

(b ~ 0 I Lint p(L_7) ; to b d__o p := p × a ; p) ;

q) o~ len~ = (L int a) long Lint : c the long L integral value equivalsm

to the value of 'a' c ;

r) ~ short = (lon~ L int a) Lint : c the L integral value, if it exists,

equivalent to the value of 'a' c ;

odd = (L int a) bool : (abs a ÷: L2 = L T) ;

sign = (L int a) in t : (a > L Q I 7 I: a < LO I -7 I O) ;

s)

t)

10.2.3. Operations on real operands

a) ~E < = CL

smallsr

b) o ~ = (L

c)~== (L

a) o~# = (L

e)~z= (L

f)~> = (L

g) o~- = (L

h)

real a, b) bool : c true if the value of raW i8

than that of 'bt and false otherwise _o ;

real a, b) bool : (-~(b < a)) ;

real a, b) bool : Ca _< b ^ b <_ a) ;

real a, b) bool : (-~(a = b)) ;

real a, b) bool : (b _< a) ;

real a, b) bool : (b < a) ;

real a, b) L real : c_ the value of war minus that of 'b r o

{2.2.3.1.e}

o~ - = (L real a) L real : (LO - a) ;

10.2.

i)£a

J)9.£

k)

•) .g£

3. continued

+ = (L real a, b) L real : (a -- b) ;

+ = (L real a) L real : a ;

abe = (L real a) L real : (a < LO I -a I a) ;

x = (L real a, b) L real : c the value of 'a' times that of 'b'

{ 2 . 2 . 3 . 1 . c }

m) o~ / = (L real a, b) L real : e_ the value of 'a' divided b E that o f j

'b' c ; {2 .2 .3 .1 .C}

n) _qZ len@ = (L real a) lolL real :

c the long L real value equivalent to the value of 'a' _e ;

o) o~short = (lon E L real a) L real : c the L real value, if it

exists, equivalent to the value of 'a' c

p) ~ round = (L real a) Lint : c a L integral value, if one exists,

equivalent to a L real value differing by not more than one-half

from the value of 'a r c

q) o~ sign = (L real a) int : (a > L O I 7 I: a < L O I -7 I O) $

r) o~ entier = (L real a) L int : (Lint j(LO) ;

(j ~ a I e : j : = E + A I ; (j ~ a I e I j - L T) I

f : j : = ~ -Z_7 ; (~ > a I f I ~)))

10.2.4. Operat ions on a r i t hme t i c operands

a) o~ P = (L real a, Lint b) L real : (a P L real(b)) ;

b) O~ P = (Lint a, L real b) L real : (L real(a) P b) ;

c) ~R_ = (L real a, Lint b) bool : (a R L real(b)) ;

d) o~_R = (Lint a, L real b) bool : (L real(a) _R b) ;

e) ~ $ = (L real a, int b) L real : (L real p(L_7)

~ abe b do p :=p x a ; (b z 0 I p I L7 / p)) ;

10.2.5. Complex structures and associated operations

a) struet L eaa~pl. = (Z real re, ira) ;

1o) .~re__ = (L eon~l a) L real : re o~ a ;

c) o~

d)
e) oo_
~) o~

~) o~

~)o~

i_m = (L tonal a) L real : im o~ a ;

abe = (L_ con~l a) L real : L sqrt(re a $ ~ + i_m a $ 8)

cow = (L_ compl a) _L cowl : (re a J_ - i_~. a) ;

= = (L_ tonal a, b) bool : (re a = re b ^_~a = i_.m b) ;

= (L_eo~p1 a, b) bool : (~(a =b)) ;

+ = (_L cobol a) L_ co~p1 : a ;

~) o ~ - = (~
~) o~+= (L

~) o~- = (L

~)o~× = (A
(re a x

m) ~ / = (A
(L real

I0.2.5. continued

compl a) L_ comp1 : (- re a I -im a) ;

cobol a, b) _L co,~l : (re a + re b _I i m a + i_m b)

con~l a, b) L_ eon~l : (re a - re b ~ i_m a - i_m b) ;

c o w l a, b) L_ c o ~ l :

r_~ b -i_ma × i_m b I r_~ a x i_m b + im a × re b) ;

eompl a, b) L_ eompl :

___d = r£(b ×eon 4 b) ; _L eo~l n = a ~ conch;

(ten I d i i_~n I d)) ;

n) o~ leng = (L compl a) lon E L_ eomp1 : (l e n E _~_ a ! lenE i_m a) ;

o) o~ short = (long L_ eon~l a) L tonal : (short re a I short im a)

p) ~ P = (L comp1 a, Lint b) L co~p1 : (a P L co,~l(b))

q) o~ P = (L tonal a, L real b) L_ tonal : (a P L_ tonal(b))

r) o~ = (Lint a, L eomp1 b) L comp1 : (L compl(a) _P b)

s) o~_P = (L real a, L eompl b) L tonal ~" (L_eon~l(a) P b) ;

t) ~ ~ = (Z_eo~ol a, i n t b) L e o ~ l : (L eo~p l p (Z1) ;

to abs b do p := p x a ; (b _> 0 I p I _L7 / p)) ;

10.2.6. Bit rows and associated operations

•) mode L~bits = [7 : L bits width] bool ~ {I0.1.~}

b) . ~ = = ([1 : int n] bool a, b) bool :

(for i_~ n ~(a[i] ~ b[i] I l) ~ true. 1 : [alse)

=) ~ # = ([]

a) £~ v ([1

~or i to

e) ~ ^ = ([1

f o r i t o

r) _.~.. ~ = ([]
~) o~ = ([]__

~) o~ 4, ([7
• ~ : / ~ ~

°

&.

bool a, b) boo l : (-~(a = b)) ;

: int n] bool a, b) [] bool : ([7 : n] bool c ;

n do e[i] := a[i] v b[i] ; c) ;

: int n] bool a, b) [] bool : ([7 : n] bool e ;

n do c[i] := a[i] ^ b[i] ; c) ;

bool a, b) bool : ((a v b)= b) $

t~

!

(

0
&l r

!

bool a, b) bool : (b <- a); " ~ ~ ~

: int n] bool a, int b) [] bool ([7 : n] bool u(a)

I b ~ iLd~[or i from 2 to n do

e[i - 13 := e[i] ; tin] := falser:

L) o~ L abe (L bits a) Lint : (L int c(L_O} $~! c.,c÷c.K~b~C;]3C) ~

~ - -" ~" [, 7"r"T.~ .~2.,-~, ,-7~ ~ :_ To 1.. _r2"l . - I

) o~ bin = (L int a) L bits : ida ~ LO then Lint ~a) ; L bits u~

~or i to L bits width doJc .- c *. I ;;t , .

(co ¢ - - ;

10.2.7. Operations on character operands

a) o~ < = (char a, b) bool : (abs a < abs b) i {10.1.h}

b) o~-< : (char a, b) booZ : (-~(b < a)) ;

c) _~ : = (char a, b) bool : (a -< b ^ b -< a) ;

d) o~ ~ : (char a, b) bool : (-~ (a : b)) ;

e) o~ -> = (char a, b) bool : (b ~ a) ;

f) o~ > : (char a, b) bool : (b < a) ;

10.2.8. String mode and associated operations

a) mode string : [I :] c h a r ;

b) _o2 < =

(i n t
(~<

c) ~ =

d) o~= =

e) ea# =

f) o~ =

S) o~> =

h) ~ =

i) o~_~ =

d) o~+

([I :

017 :

k) ~ 2 + :

i) 9 2 + :

([1 : int m] char a, [I : int n] char b) bool :

i(;) ; int p = (m < n] m [n) ; bool c ;

I [n -> ; I e : (c := a[i] = b[i] [: (i := i + 1) _< p [e) ;

(a [m < n [a[i] < b[i]))) ;

(string a, b) bool : (-~(b < a)) ;

(string a, b) bool : (a -< b ^ b -< a) ;

(string a, b) bool : (-~ (a = b))

(string a, b) bool : (b -< a)

(string a, b) bool : (b < a) ; a~_~ ~ b)

([7 : int n] char a, char b) bool : (~ - 7 ~ =[~] R_ ~) $

• - v A v r 7 1 . (char a, [l : int n] char b) bool . (n -~ =_. b)

([I : int m] char a, [I : int n] c h a r ~ . ~ ;~. "

m + n] char c ;

m] := a; c[m + I : m +n : Y] := b; c) ;

(string a, char b) string : (string s = b ; a + s) ;

(char a, string b) string : (string s = a ~ s + b) ;

{The operation defined in b implies that if "a"[7] < 'q~'[l], then

"" < "a" ; "a" < '~" ; "aa" < "ab" ; "aa" < '~a" ; "ab" < '~". }

10.2.9. Operations combined with assignations

a) o~minus = (re[Lint a, L int b) Lint : (a := a - b) ;

b) o~minus = (re[_L real a, L real b) L real : (a := a - b) ;

c) o~ m/nus -- (ref _L comp1 a, L_ comp ! b) _L octopi : (a :-- a - b) ;

d) d~plus = (ref L int a, Lint b) Lint : (a := a + b) ;

e) o~ plus = (re[L real a, L real b) L real : (a := a + b) ;

f) o~ plus = (re[_L compl a, L_ comp! b) L_ camp! : (a := a + b) ;

g) o~ times = (re[L int a, Lint b) Lint : (a := a × b) ;

~0.2.9- continued

h) ~ ti~s = (ref L real a, L real b) _L real : (a := a x b) ;

i) o~ times = (ref L compl a, L covrp1 b) L conrp1 : (a := a x b) ;

j) o~ over = (re[Lint a, L int b) Lint : (a := a ÷ b) ;

k) o~ modb = (re[L int a, Lint b) L in t : (a := a ÷: b) ;

l) d~ over. = (re[L real aj L real b) L real : (a := a / b)

m) o~ over = (re~ L oo~p1 a, L coral b) L_ comp1 : (a := a / b)

n) o~Q = (ref L real a, Lint b) L real : (a ~ L real(b))

o) o~ Q = (re[L_ coral a, Lint b) L_ co,~l : (a _Q L co~pl(b)) ;

p) o~ Q = (re[L co,~l a, L real b) _L comp1 : (a.q L corgi(b)) ;

q) o~Flu8 = (ref string a, s~n~ b) re[string : (a a + b ; a) ;

r) o~ prus = (re[string a, string b) re[string : Ca := b + a ; a) ;

s) o~plu8 : (re[string a, char b) red string : (a :: a ÷ b ; a) ;

t) o~ prus : (re[string a, char b) re I string : (a :: b + a ; a) ;

10.3. Standard mathematical constants and functions

a) L real L pi = o a L real value close to ~ $ see Math. of Co~p.

v. 18, 1862, pp. 80-88 a ;

b) proo L sqrt = (L real z) L real : c if x-> 0, a L real value

close to the square root of 'x' c ;

c) proc L ezp = (L real z) L real : c a L real value, if one exists,

close to the exponential function of 'x' o_ ;

d) proc L In = (L real z) L real : c a L real value, if one eziats,

close to the natural logarithm of 'x' c

e) r~ L cos = (L real x) L real : c a L real value close ~o de

cosine of 'z' c ;

f) proc L arccos = (L real x) L real : c_ if abs x_< L I, a L real

value close to the inverse cosine of 'x', LO _< L arccos(z) ~ L pi o d

g) pro o L sin = (L real x) L real : c a L real value close to the

sine of 'x' a ;

h) proc L arcsin = (L real x) L real : c if abs x -< L_I, a L real value

close to the inverse sine of 'x', abs L arcsin(x) _< L pi / L_8 _~

i) r~ L tan (L real z) L real :

_o a L real value, if one exists, close to the tangent of rz" o ;

j) ~roc L arctan= (L real z) L real :

c a L real value close to the inverse tangent of 'x',

.~s L arctan(x) -< L pi / L2 a ;

I O. 3. continued

k) ~ro c L random = _L real expr c the next pseudo-random ~ real value

from a uniformly distributed sequence on the interval [L_O~ Z~) c ;

i) proc L set random = (Z real x) : (c the next call of Z random is

made to deliver the value of 'x' c ; L random) ;

I0.~. Synchronization operations

a) o~ down = (re[int dijkstra) : (do elem(i~ dijkstra _> ~ then

dijkstra minus 7 ; 1 else c if the closed-statement replacing this

comment is contained in a unitary-phrase which is a constituent

unitary-phrase of the smallest collateral-phrases if any, beginning

with a parallel,symbol and containing this closed-statement, then

the elaboration of that unitary-phrase is halted {6.0.2.c} ; otherw

the further elaboration is undefined c ~I; I : skip) ;

b) o~ u~ = (red int dijkstra) : elem(dijkstra plus ~ $ c the elaboration

is resumed of all phrases whose elaboration is not terminated but

is halted because the name possessed by 'dijkstra' referred to a

value smaller than one c) ;

{For insight into the use of down and u~. see E.W. Dijkstra,

Cooperating Sequential Processes, EWD123, Tech. Univ. Eindh~ven, 1965. }

10.5. Transput declarations {"So it does:" said Pooh. "It goes in:"

"So it does:" said Piglet. "And it comes out:'

"Doesn't it? said Eeyore. "It goes in

and out like anything."

Winnie-the-Pooh, A.A. Milne,

10.5.0. Transput modes and straightening

10.5.0.1. Transput modes

a) mode % simplout = union(~ L int ~, ~ L real ~, ¢_L cowl $,

bool~ char, string) ;

b) mode % outtype =union(¢ D Z int ~ ¢ O L real ~, ¢ D bool ~,

D char ~, ¢ D outstruct ~) ;

c) ~e % outstruct = c an actual-declarer specifying a mode united

. f ~ {2.2.~'~'h} all ~ s ; L s ~ c ~ e ~ from (2.2.~.1.j} only modes
from which the mode specified by outtype is united c ;

d) mode % intype = union(¢ reid Z int ~, ~ re[/ Z real Sj

re[D bool ~, ~ re[D char ~, ~ re[D outstruct ~)

e) mode ~ tamro[= struct(strlns F) ; {See the remarks under 5.5.1.6.}

I 0.5.0.2. Straightening

a) ~ strai~htout = (outt~pe x) [] s~lout :

the result of "straightening" 'x ~ c ;

h) o~ straishtin = (intype x) [] re[si~lout :

u the result of straightening 'x' c ;

The result of straightening a given value is obtained in the following

steps :

Step I: If the given value is (refers to) a valu~e frc~ whose mode that

specified by s~m~lo~t is united, then the result is a new instance of

a multiple value composed of a descriptor (I, I, 1, I, I) and the (the

name of the)given value as its only element, and Step ~ is taken ;

Step ~: If the given value is (refers to) a multiple value, then, letting

n stand for the number of elements of the given value, and Yi for the

result of straightening its i-th element, Step 3 is taken; otherwise,

letting n stand for the number of fields of the (of the value referred

to by t ae) given value, and Yi for the result of straightening its i-th

field, Step 3 is taken ;

10.5.0.2. continued

Step 3: If the given value is not (is) a name, then, letting m i stand for

the number of elements of Yi' the result is a new instance of a multiple

value composed of a descriptor (I, m I + ... + mn, I, I, I) and elements

the 1-th of which, where 1 = m I + ... + ink_ I + j, is the (is the name

referring to the) j-th element of Yk for k = I, ..., n and j = I, ...,

Step 4: If the given value is not (is) a name, then the mode of the result

is 'row of' ('row of reference to') followed by the mode specified by

simp lout.

10.5.1. Channels and files

{"Channels", "backfiles" and files model the transput devices of the

physical machine used in the implementation.

A channel corresponds to a device, e.g. a card reader or punch, a

magnetic drum or disc, a piece of core memory, a tape unit or even a

set-up in nuclear physics the results of which are collected by the

computer. A channel has certain properties (10.5.1.1.d : i0.5.1.1.m),

Some devices may be seen as channels with properties in more than one

way. The choice m~de in an implementation is a matter for individual

taste. Some possible choices are given in Table I.

All information on a give~ channel is to be found in a number of

backfiles. A backfile (I0.5.1~b) comprises~ ~ ~ t.. a three-

dimensional array of integers (bytes of information), the book of the

backfile, indexed by page, line and char; the lower bounds of the book

are all one and the upper bounds are the m~ucpage, maline and muxchur

of the channel; furthermore, the backfile comprises the position of the

"end of file", i.e. the page number, line number and character number

up to which the backfile is filled with information.

On a given channel, a certain maximum number (10.5.1.1.m) of files

(I0.5.1.2.a) may be "opened" at any stage of the elaboration of the

program. A file contains a reference to a backfile, to a current page

number, line number and character number, and to the channel on which

it has been opened.

After the elaboration of the declaration of nextbfile (I0.5.1.1.c),

all backfiles are part of the chains of backfiles referred to by

nextbfile.

10.5- I • continued

Examples :

i) In a certain implementation, channel six is a line printer. It has

no input information, nex~bfile[6] is initialized to refer to a

backfile the book of which is an integer array with upper bounds

2000, 60 and 144 (2000 pages of continuous stationery), with the

end of file at position (1, 1, 1), and next equal to nil. All I@~-
elements o f the book ~e~unde f i ned .

ii) Ch-nnel four is a drum, divided into 32 segments each being one

page of 256 lines of 256 bytes. It has 32 backfiles of input

information (the previous contents of. the drum), so ~xtb~Ze[4]
Iback F~,'l,t

is initialized to refer to the first ~ of a chain of 32

backfiles, each referencing the next, the last one having next

lequal to nil. Each of those backfiles has an end of file at positiom

(2, I, 1).

iii) Channel twenty is a tape unit, it can accommodate one tape at a time

one input tape is mounted, and another tape laid in readiness. Here,

neztbfi~e[20] is initialized to refer to a chain of two baekfiles.

Since it is part of the standard-declaratlons, all input is part of

the progrs~1, though not of the partlcular-program.

In opening (I O. 5- I. 2. c) a given file on a given channel, the

first baekfile is taken from the chain referenced by nextbfi~e of the

channel and is made to be referred to by bfile of the file, obliterating

~Ehe previous backfile, if any, of the file.

Apart from the possibility of being obliterated, at any stage in the

elaboration of the particular-progr~n, all backfiles are either ~rt of

the nextbfile chain of the channel, or referenc~d by a file opened

that ChArt-el, or part of the closec~file chain (10.5.1.1.o) of that

channel.

This models the pea~e of a magnetic tape that, apart from the

possibility of being left as a scratch tape, is either ready to be

mounted on, in use on, or saved from the tape unit.

When a file is "closed" {10.5.1.2.q}, its backfile is attached to

the ehazn referenced by closedbfile of the channel; all files referencing

the same backfile as that file are then unavailable for further transput.

10.5.1. continued 2

Example :

begin ~le tapeT, tapes ;

open(tape~, ~0) ~ tapes := tapel

out(tapeS, ~d.~d~, pi) ; new page(tape;)

close (tapeS)

The con~ of a given file is used in conversion; if cony of the

file is nil, then stand cony of the channel on which the file was

opened is used as "conversion key", and, otherwise, the string to which

cony of the file refers.

On output, if a character to be converted is not the same as some

element of the conversion key, then the further elaboration is undefined;

otherwise, the character is converted to an integer, viz. the lowest

among the ordinal numbers of those elements of the key which are the

same as that character. ~i

On input , i f an in teger to be converted i s~ la rger than the number of i

elements of the convers ion key, then the f u r t h e r e l a b o r a t i o n i s undefined~

otherwise, the in teger i s converted to that character in the key whose

ordinal number is that integer. ~'::

On all files opened on a channel for which set possible is false, !~

and put possible and get possible both true, input and output may not ~:

file, either is possible, but, once one has taken place on the file, the

other may not until the file has been reset again. Before the first

output takes place on such a file, its book is filled with spaces. If,

after output, such a file is reset, then an end of file is positioned

at the current page, line and character number. (Such a file might be

impl~nented with a buffer that holds one line.)

On all files opened on a channel for which set possible is false,

binary and nonbinary transput may not be alternated. }

• • • ~

• ~ ~

0
o

°,4
r'-t

• ,d
bO 0

o
• • ~I o

~ ~ ~ 0

o
!

k ~

.

~ ~ ~ ' ~

~ o
m m m ~ m ,-I

~ o °
® ~ ~ ~o

0
m ~ ~ ~ r-~ 0

• • • • 0

° i
m

o

• • • ~ CO 0
co o

u~ 0
M

o
m

~ ~ • ~ 0
o ~ ~ ~ ~ ~ o ~ o o
g O 0 0 0 0 ~ ~
~ 0 [°

properties

reset possible

set possible

get possible

put possible

bin possible

max page

max line

max char

stand cony

max nmb files

properties

reset possible

set possible

get possible

put possible

bin possible

max page

max line

max ohar

stand oonv

max ~ files

card reader

false

false

true

false

false

I

large

72

card punch

false

false

false

true

true

I

very large

80

a 48- or 64-character code

magnetic disc

true

true

true ~

true

true

2OO

16

128

some code

10

magnetic

true

false

true

true

true

I

I

52~288
some code

4

magnetic

true

false

true

false

false

very large

16

84

64-char code

I

drum

true

true

true

true

true

I

256

256

sue code

32

tape

true

false

true

true

true

very large

large

large

some code

I

paper

false

false

true

false

false

I

very large

8o

5-hole code

I

unit

tape

TABLE I: Properties of some possible channels

true

false

false

true

false

very large

• 60

144

line-pr code

I

line printer

false

false

false

true

false

very large

6o

144

line-pr code

I

reader

false

false

true

false

true

I

very large

150

7-hole code

I

tape punch

false

• false

false

true

false

I

very large

4

lathe code

I

10.5.1.1. Channels

a) int nmb channels = ~an integral-expression indicating the number of

transput devices in the in~olementation ~ ;

b) struct % bfile = ([,,] int book, int lpage, lline, lchar,

refb~ile next) ;

c) [7 : nmb channels] re~ bfile % nextbfile(c

initialization c) ;

d) [7 : nmb channels] bool reset possible = c

indicating which of the physical devices

channels allow resetting {e.g. rewinding

e) [7 : nmb channels] bool set possible = c a

indicating which devices can be accessed

f) [7 : nmb channels] bool get possible = ~ a

indicating which

g) [l : nmb channels]

indicating which

h) [7 : ~b channels]

indicating which

i) [; : ,~b

giving

j) [7 :~b

giving

k) [7 :

devices can be used for

bool put possible = ~ a

devices can be used for

bool bin possible = c a

devices can be used for

giving

some appropriate

a row-of-boolean-expression,

corresponding to the

of a magnetic tape } c ;

row-of-boolean-expression,

at random c ;

row-of-boo lean-expression

input c ;

row-of-boolean-expression

output _c ;

row-of-boo lean-expression

binary transput c ;

channels] int max page = _o a row-of-integral-expression

the maximum number of pages per file for the channels c ;

channels] int max line = c a row-of-integral-expression

the maximum number of lines per page c ;

channels] int max char = c a row-of-integral-expression

the maximum number of characters per line c ;

l) [7 : nmb channels] ref string % stand cony = o a row-of-reference-to- •

row-of-character-expression giving the standard conversion keys for

the channels c ;

m) [7 : nmb channels] int max ~nb files = _c a row-of-integral-expression

giving the maximum numbers of files the channels can accommodate e ;

n) [7 : nmb channels] int % nmb opened files

([7 : nmb channels] int zero ; for i t_.o nmb channels do zero[i]~= 0

zero) ;

o) [7 : nmb channels] ref bfile % closedbfile

([7 : nmb channels] ref bfile nil ; for i to nmb channels

nil[i]:= nil ; nil) ;

I O. 5- I. I. continued

p) ink stand in channel = o an integral-expression whose value does not

exceed nmb channels, such that get possible [stand in channel] is

true, and stand cony [stand in channel] comprises, in some order,

all character-tokens c ;

~) ink stand out channel = c an integral-expression whose value does not.

exceed nmb channels, such that put possible [stand out channel] is

true, and stand cony [stand out channel] comprises, in'some loftier, '

all character-tokens o ;

r) ink stand back cho~zel = e an integral-expression whose value does

not exceed nmb channels, such that reset possible [stand back channel]

set possible [stand back chc~nel], get possible [stand back o~nel],

put possible [stand back channel] and bin possible [stand back

~hannel] are true and stand cony [stand back channel] comprises,

in some order, all character tokens ~ ;

s) proo file available = (int channel) bool :

(r~b opened files [channel] < max ~b files [channel]) ;

I0.5. I • 2. Files

a) struot file = (ref bfile % bfile, ,

ref int % page, % line, % char, % than,

ref bool g state de f, % state get, g state bin, ~ owned,

ref strin~ cony) ;

b) proo ~ undefined = expr((false I true) I skip) ;

c) proo open = (ref file file, int ch) :

i~ file available (oh)

then file := file(nextbfile[ch], I, 7, 7, oh, falser false= false,

t~ nil) ; nextbfile[ch] := next o~ nextbfile[oh] ;

nmb opened files[ch] plus 7

else undefined

d) r~ set = (file file, int p, l, c) :

i~ set pessible[chan o~ file] ^ opened o~ file

then page o~ file := p ; line o~ file := 1 ; char o~ file := o ;

(outside(file) [undefined)

els__._~ undefined

I 0.5 • I .2. continued

e) proc reset = (file file) :

i~ reset possible[than o~ file3 ^ opened o~ file

then i~ state def o~ file ^ -~ state get o~ file ^

-~eet possible[chan o~ file]

then lpage o~ b file o~ file := page o~ file ;

lline o~ bfile o~ file := line o~ file ;

.... lchar o~ bfile o~ file := char o~ file

page o~ file := line o~ file := char o~ file := 7 ;

state defoe file := false . . ~ ¢ k ~ , ~ ~;l~.< 1 V

else undefined ÷ < l i . ~ o__~. ~¢ |~ <. 1 V

f) proc % outside = (file file) bool : (opened o~ file I j
line ended(file) v page ended(file) v file ended(file)) ;

g) pro c file ended = (file file) bool : (opened o~ file [

int. p = page o~ file, lp = lpage o~ b file o~ file,

I = line o~ file, ll = lline o~ bfile o~ file,

c = char o~ file, lc = lobar o~ bfile o~ file ;

(p < lp i false I: p > Ip I true I: 1 < II I false

i: I > I I I true I c -> lc)) ;

h) proc line ended = (file file) bool :

(opened o~ file I char o~file > max char[than o~ file]) ;

i) proc page ended = (file file) bool :

(opened o~ file I line o~ file > max line[than o~ file]) ;

~) proc % get string = (file file, reX7 : int n] char s) :

i~. get possible[than o~ file] ^ opened o~ file

then string cony = (cony o~ file :=: nil I stand cony[than o~ file]

cony o~ file) ;

int p = page o~ file, 1 = line o~ file ; ref int c = char o~

i~ -~ set possible[chan o~ file] thef state def o~ file

then(-~state get o~ file v state bin o~ file I undefined)

else state def o~ file := state get o~ file := true ;

state bin o~ file := false

for i to n do(outside(file)] undefined I

s[i] := cony[book o~ bfile o~ file[p, l, oil ; o plus 7)

__ undefined else

10.5.1.2. continued 2

k) ~ ~ put string = (file file, E7 : int n] ohar e) :

i~ put possible[than o~ file] ^ opened o~ file

then int oh = than o~ file, p : page.ok file, I = Sine o~ fi~e ;

string cony = (cony ok file :=: nil [stand cony[oh] i

cony o~ file) ; int spacer h ; ref i nt c = char o~ file ;

i~-~ set possible[oh] thef state def o~ file

th__en(state get o~ file v state bin o~ file i undefined)

else state def o~ file := true ; state get o~ file :=

state bin o~ file := false ;

(-~ char in " " " str~ng(._, space, cony) l undefined) ;

for i t_o max page [ch] do for j to max line [oh]

for k to max char[oh] do

book o~ bfile o~ file[i, j, k] := space

for i to n ~(-~char in string(s[i], h, cony) v outside(file) I

undefined I book o~ bfile o~ file[p, l, o] := h ; u Flus

else undefined

i) proc char in string = ([7 : 7] char c, ref int i, [7 : int w]ohur s)bo(

(for k to w do(c = s[k] i i := k ; l) ; false. I : true) ;

m) pros space = (file file) :

(c~us o~ file plus 7 ; outside(file)]undefined) ;

n) proo backspace = (file file) :

(char o~ file minus 7 ; outside(file) I undefined) ;

o) proo new line = (file file) :

(line o~ file plus 7 ; char o~ file := 7 ; outside(file)]undefined)

p) ~ new page = (file file) :

(page o~ file plus 7 ; line o~ file := char~o~ file := 7 ;

outside(file)]undefined) ;

~) p roo c l ose = (f i l e f i l e) :
/ oz d file

%~n int oh = ohun o~ file ; (reset possible[oh] I reset(file)) ;

next o~ bfile o~ file := closedbfile[eh] ;

olosedbfile[ch] := bfile o~ file ; opened o~ file := false ;

nmb opened files[eh] minus 7

I O. 5. I. 2. C~¢inued 3

r) fi~ sand in = (file f ; open(fl stand in channel) ; f) ;

s) file stand out = (~ile f ; ~(~i stand out channel) ; f) ;

t) i~ stand baok = (file f ; open(f~ stand baok channel) ; f) ;

{Certain "standard files" (r, s, t) need not be opened by the

progra,~er, but are opened for him in the standard-declaratlons~

print

read (10.5.3.a) for

read bin { 10.5.7. a }

u) proc char number

v) proo line number

w) proc page number

I0.5.2. Formatless output

a) proo print = ([3 outty~e x) : put(standout• x) ;

b) pros put = (file file, [7 : int n] outtype x) : (~r i to n do

([7 : int 1] ai~plout y = strai~htout x[i] ;

£or d t~ 1.4.~
(s t f , ing s ; bool b ; ,o~.c~v o ;

(f (~ int i ; (i ::= yEj] I

s := 1; int string(i, L int width + 7, 70) ;

sign supp zero(st#; ~ ~ ~))) ~) ;

(I0.5.2.a) can be used for output on stand out,

input from stand in, and w~ite bin {I0.5.6.a} and

for transput involving stand back. }

= (file f: int : (opened o~ f I char o~ f) ;

= (file f) int : (o~ened o~f I line o~ f) ;

= (file f) int : (opened o~ f l.page o~ f) ;

10. 5- 2. continued

c) proc 1; i n t s t r i n g = (1; i n t x, i n t w, r : s t r i ~ : (¢ p ~./~ ¢ < | ~

~trin~ e("") ; 1; int n(abs x) ; 1; int Ir = Kr ;

for i to w - 7 ~(c prus dig char(B_(n ÷: lr)) ; n over lr) ;

(n = 1;_o I C a _ > _ ~ 1 " + " I " - ") + o :) ;
d) pros 1; real string = (1; real x, int w, d, e) string :

(d~O ^e >O^d+e+4~w I

1; real g = L70 ~ (w - d - e - 4) ; 1; ream h = g × L.7 ;

1; real ~(abs x) ; int p(O) ;

while ~ -> g d o(~ times 1;. 7 ; p plus 7) ;

(~ > 1;O I while y < h ~(~ times 1;70 ; p minus 7)) ;

(~÷_L.~ ×_L.7 4 d ~ g I ~ : = h ; pplus 7: ;
1; dec string((x _> 0 1 ~ I -~), w - e - 2, d) +

- "I0" + int string(p, e + 7, 70)) ;

e) pros 1; dee string = (L real x, int w, d) string :

(abs ~ < 1;70 ~ (w - d- 2) ^ d a 0 ^ d + 2 -< w I string s("") •

1; real y(Cabs x +_L. 5 x _~.7 $ d) x 1;_.7 $ (w - d - 2)) ;

for i to w - 2 ~_ s plus dig char((int o = entier S(y times LTO) ;

y minus Kc ; e)) ;

(x a 0 I "+" I "-") + s[7 : w - d - 23 + "."+ s[w - d - 7 :: 7]) ;

f) proo ~ d ig o~zr = (i n t x) eha r : ("072~456789obodef"[~ + 73) ;

{ In connection wi th 1 0 . 5 . 2 . c , d , e , s e e T a b l e I I . }

(¢

(~

tt ## put(file, (re z, !._, ~ z)) ; end): ~: ;

(b ::=yCd] I s := (b I "_7" I "o"9: ;

(e ::= y[j] I nextplc(file) ; put string(file, c) ; end) ;

(s ::= y[j] I re~[~: int n] char t = s ;

for i to n do put(file, s[i]) ; end) ;

I . ~ ~ .~Cl~4,~ (L real x ; (x ::= yEj] I s := L real string ~I g) ~roo Z elan sunn zero - ~rl . : ~- ~ • . • {~ ~.
(x, D real width + L exp width + 4, L real width. Z e~ width: :o~ ~ .~om ~ o ~while eel] = "0" do

d

L~:~i~k~ (oEi] := o[i - 7] ; c[i - 7] := "."[713 ;

h) ~1; int width = (int c(7) ;

while 1;70 ~ (c - 7: < 1;.I × 1; max int do c lus 7 ; o) ;

i) tnt 1; real width = - entier S(1; In(1; small real: / 1; In(1;70)) ;
" ~ " L t ~ f - -

~) ~ 1; e~ width = 7 + entier S~ In(1; max real: I 1; InC1;70):/~L e~C~.lOl

k) ~_~ ~ nextplo = (file file: :

(re~ : int n] char t = s ; int c7 = char o~ file ;

char o~ file := c7 + n ; (line ended(file) I nextplcCfile) I

char o~ file := c7) ; put string(file, s) ;

(-~line ended(file) I space(file:)) ;

end: skip))) ;

((line ended(file) I new line(file)) ;

(page ended(file) I new page(file)) ;

(file ended(file) I undefined:: ;

Lint string

w-7

+DDDDDDDDDDD

w

L dec string :

w-d-2 d

+DDDDDD. DDDDDDDD

w

Z real string :

w-d-e-~ d e

+DDDDDDDD.DDDDDDi0~DDD

W

TABLE II: Display of the values of

Lint string, L dec string and L real string

[73 type (I = integer, 2 = real fixed, 3 = real floating,

= complex fixed, 5 = complex floating, 6 = string,

7 = integer choice, 8 = boolean)

[2] radix (2, ~, 8, 10 or 16)
i

[$] sign (0 = no sign frame, I = sign frame '+' 2 = sign frame '-')

[~] number of digits before point; if type = I then w-7, else if

type 2 or ~ then w-d-2 else if type = 3 or 5 then w-d-e-#, or,

if type = 6, then number of characters in string

[~3 number of digits after point; if type = 2, 3, h or 5 then d

[6] sign of exponent; if type = 3 or 5 then as [$] ,.

[2] number of digits of exponent; if type = 3 or 5 then e

[8], ..., [7~] as [I], ..., [23 when fre~e[7] = ~ or 5

TABLE III: Significance of the elements of ,frame

• 5- 3. Formatless Input

read = ([] intype x) : get(stand in. x) ;

proc get = (file file, [7 : int w] intype x) :

begin char k ;

o~ ? = (~ t r i n ~ s) b o o l :

(outside(file) I false I: get string(fife, k) ;

char in string(k, loc int~ s) I

true I backs~e(file) ~ faleg) ;

proc read hum = string expr

(skip spaces ~ ? "+ -" I k + (skip spaces $ read dig) I

"+" + read dig) $

proc skip spaces = expr while(nextplc(file) ; ? ".") do skip •

proc read dig = string expr

(string t("") ; while ? "07~34667B9" do t plus k ; t) ;

proc read real = strin S ex~gr

(read num+ (? "." I "." + read dig I "") +

l ! / ~ n . . , 1. d (-~ "~u" ; "lu : , I ",.I ,= rea I "")) "

for i to w do

([7 : int l] ref si~lout y = straightin x[i]

for j to I do

(raf bool bb ~ ref s ~ ss ~ ref char cc

(~ (ref L int ii ; (ii ::= y[j] I

val ii := Z string int(read num, 70))) ~)

(¢ (re~ L real xx ; (xx ::= y[j] [

val xx := L string real(read real))) })

(~ (re~ Z_ cowl zz ~ (zz ::= y[j] I get(file, re o~ ~z)

(skip spaces ; ? "_l" I get(file, im o~ zz) I undefined))) ~)

(bb ::= y[j] I skip spaces ; val bb := (? "70" I k = "7"))

(co ::= ~[j] I nextplc~(file) ; get string(file, co) ~ end)

(ss ::= ~[j] I re,If: int n] char t = ss ; i

for i _~ n do get(file, ssEi3) ; end) ; I~
• " ° , . I . t _ ~ " 1 I . 1 f l ' f f • (l l .ne e n d e d (f / l e) I : ~ - , ~ :-~.~, ==. ; ,:c. ~ L "- I u n d e f i n e d) •

end: skip end ;

c) ~ Z string int = ([7 : int w] char x, int r) Lint :

(Lint n(LO) ; Lint lr = ~r ; for i from 2 to w do

n := n × lr ÷ K(int d = char dig(x[i]) ; (d < r] d)) ;

(x E T] = " + " I n I: x [7 2 = " - " I ~)) ;

I 0.5.3. con~in~ed

d) proc L string real = (string x) L real :

(int e ~ (char in string("~o" , e, x) I

L string dec(x[1 : e - I]) × 510 ~ string int(x[e + I :: I], 10)

L string dec(x)))

e) proc L string dec = ([I : int w] c~_ x) L_rea_~ :

(L real r(LO) $ int p ; (char in string("."~ p, x) i

[I : w - 2] char s = x[~ : p - I : 1] ÷ x [p ÷ 1 :: 1] $
~o for i t_o w - 2 do r := L ~ × r +

K(int d = char dig(~[i]) ; (d < 10 1 d))

(x [1] = " + " l r I : x [l] = " - " I - r) × ~ . I ~ (w - p) I

L string dec(x + ".'~)) ;

~) proc % char dig = (char x) int :

(int i ; (char in string(x, i, '~1234667B~abcdef'~

10.~.~. ~orn~ed o~u~

~) proc o~t

besin

int:

real:

co~ l :

I i - I)) ;

= (file file, tamro~ to~rof, [1 : intn] outtype ¢) :

string format = format primary list pack

("("+ F o~ t~rof +")"j loc int(1)) $ i nt p(1) $

for k to n do

([I : int l] si~olout y = straishtou t x[k] ;

for j to 1 do

([I : 14] int i~ame ; int q(p) ~ pattern(format, p, frame) ;

(frQme[I] I int, real, real, co~l, cowl, string, intohj bo

(¢ (L int i ~ (i ::= y[j]]

tr~s~edit L int(file, i, format, q, i~ame) ~ end)) ~) $

undefined.

(¢ (L real x ~ (x ::= y[j] I

trans edit L real(file, x, format, q, ~ame) ; end)) ~) $

(~ (_L i nt i ; (i ::= yEj] I

trans edit L reaICfile, i, format, q, ~ome) ; end)) ~) ;

undefined.

(¢ (~ coup1 z ; (z ::= yLj] I

truns edit L co~pl(file~ z, format, q, frame) ~ end)) ~) ;

(~ (L real x $ (x ::= y[j] I

trans edit L co~plCfile, x, format, q, frame) $ end)) ~) $

(¢ (Lint i $ (i ::= y[j] I

trans edit L octopi(file, i, format, q, i?rume) ; end)) ~)

undefined.

I 0 • 5 ° I~. continued

string: ([7 : frame[4]] char s ; char c ;

(s ::=.yCj] I

trans edit string(file, s, format, q, imams) ; end) ;

Co ::=y[j] I

trans edit stringCfile, c, format, q, frame) ; end)) ;

undefined.

intah: (int i ; (i ::= y[j] i

trans edit choice(file, i, format, q) ;end)) ; undefined.

bool: (bool b ; (b ::= y[j] i

trans edit bool(file, b, format, q) ~ end)) ~ undefined.

end: do insertion(file, format, q) ; p plus I

))

end ;

b) proo ~ format primary list pack = (string s, ref int p) string :

(string t(format primary(s, p))

while sip] = ~ " do t plus "j " + format primary(s, p) ; p plus I ; t)

c) proc ~ format primary = (string s, ref int p) string :

(int n, q ; string f(p plus I ; insertion(s, p))

q :=p ~ replicator(s, p, n)

(sip] = "(" [string t = format primary list pack(s, p) ;

to n do f plus t I p := q ; f plus pattern(s, p, loci1 : 14] int))

f ÷ insertion(s, p)) ;

d) proc Z insertion = (string s, ref int p) string :

(int q = p ; skip insertion(s, p) ; s[q : p - I : I])

e) proc ~ skip insertion = ([I : int 1] char s, ref int p) :

.while(p > 1 I false I: skip align(s, p) I true I

skip litCs, p)) do skip ;

f) ~ ~ skip align = (string s, re~ in t p) bool :

(int q = p ; replicator(s, p, loc int) ;

(char in string(s[p], loc int, "x y p 1 k") i

p plus I ; true I p := q ; false)) $

E) ~ ~ replioator = (strin~ s, ref int p, n) :

(string t("") ; while char in string

(sip], loc int, "01254567B9") d_.~t plus s[p] ; f~ I~ ~)~

n := (t = "" I I I string int("+" + t, 10))) ;

lO.5.h, con%inued 2

a) proc % skip lie = (string s, ref int p)bool :

(int q = p ; replicator(s, p, loc int) ;

(s[p] = """" I while(sip plus 7] = """" i s[p plus I] = """" I

true) do skip ; true I p := q ; false)) ;

i) proc % pattern = ([7 : int m] char format, ref int p,

ref[] int fre~e) string :

begin int n ; ~ 1,0= ~ j

end:

end ;

o~ ? = (string s) boo_~ :

(skip insertion(format, p) ; p > m I false l

int q = p ; replicator(format, p, n) ;

(format[p] = "s" I p plus I) ;

(char in stringCformat[p], loc int, s) true I p := q ; false

proc intreal pattern = (re~I : ?] int frame) bool :

((hUm mould(frame[2 : 4 : I]) I frc~e[7] := 7 ; l) ;

(? "." I: nummould(frame[3 : 5 : I]) I frame[7] := 2 ; l) ;

(7 "e" I: num mouldCframe[5 : ? : I]) I fr~ne[1] := 3 ; l) ;

false. I : true) ;

proc num mould = (ref[7 : 3] int frame) bool :

((? "r" I f r ~ n e [1] := n) ; (? "z" l frame[3] plus n) ;

(7 "+" I frame[8] := I I: 2 "-" I frame[2] := 8) ;

while ? "dz" d_o frome[3] plus n ;

format[p] = ,,,,, v format[p] = "i") ;

proc string mould = (reX] int frame) bool :

(while ? "a" do frame[4] plus n ; format[p] = ", ") ;

for i to 74 d_.~ frome[i] := 0 ;

(intreal pattern(freme[; : 73) I (? "i" I p plus 7 ;

freme[1] plus 2 ; intreal pattern(freme[8 : 14 : 1])); end) ;

(string mould(freme) I freme[7] := 6 ; end) ;

(7 "b" I frame[l] := 8 1 p plus I ; frameE7] := 2) ;

(format[p] = "(" I

while ? "(," do skip lit(format, p) ; p plus 7) ;

skip insertion(format, p) ~ Fo,.p-t~ fo l ~-|]

• ~. continued 3

roc ~ trans edit L int = (file f, Lint i, string format,

re~ int p, [] int fr) :

irons edit string(f, Lint string(i, fr[4] + 7, fr[2]), format, p, fr)

ro__o ~ trans edit L real = (file fj L real X, string format,

r~ int p, [] int fr) :

trans edit string(f, stringed L real(x, fr), format, p, fr) ;

roc ~ stringed L real = (L real z, [] int fr) string :

(f r [7] = 2 i L dec s t r i n g (x , f r [4] + f r [5] ÷ 2, f r [5]) I

L real string(x, fr[4] + fr[8] + fr[7] + 4, fr[8], fr[7])) ;

roe ~ trans edit L compl = (file f, L campl z, [3 int fro) :

tran8 edit string(f, ([7 : 74] int g(fr) ; g[7] minus 8 ;

stringed L real(re z, g[7 : 7]) + 'q" + stringed L real

(i~ z,~[8 : 74 : I])), format, p, fr) ;

too ~ trans edit string = (file f, string x, [I : int m] char for,~t,

ref int p, [] int f rame) :

bag in i n t p,7 (! 1 , n ; b o o l supp , , e~.~.~.tz~, .S (~._

. ~ 7 = (string s) bool :

• (do insertion(file, format, p) ; p > m I false I

int q =p ; replicator(format, p, n) ;

(supp := format[p] = "s" I p plus 7) ;

(char in string(format[p], loc int, s) true I p := q ; false)

pros copy = ezpr((-~suppl put string(f, s[pT])) ; p7 plus I) ;

pros intreal mould = ex~r

(7 '~"', sign mould(frame[S]) ; int mould ,.

(7 ". " I copy ; int mould I: s[pI] = "." l p7 plus 1) ;

(7 "e" I copy ; sign mouldCfre~e[6]) ; int mould)) ;

proc sign mould = (int sign) : (sign ~= 0 I p7 plus 7 l

s[pT] := (sEpT] = "+" I (sign I "+% "._") I "-") ;

(7 "n" I s ign supp zeroC~Iplj ~ p l + n ~) I n := O) ;

put string(file, sip7 : p1 + n : 7]) ; p plus I) ;

proc int mould = ezpr

(Z : (7 " z " I boo l z s (t r u e) ; t o n do

(s[pT] = "0" ^ zs I put string(file, ". ") ;

p7 p l u s 7 I z s := f a l s e ; copy) ; l) ;

(7 "d" I to n do copy ; 1)) ;

10.5.~. continued

proc string mould = expr while ? "a" do to n do copy ;

tea: (frcune[7] = 6 i string mould I: intreal mould ;

frame[7] > $ I p plus 7 ; copy ; intreal mould)

end ;

o) proc ~ trans edit choice = (file f, i~.t c, string format, ref int p) :

(c > 0 [do insertion(f, format, p) ; p plus 2

_~ c - 7 do(skip lit(format, p) ; for,at[p] = "," i

p plus 7 I undefined) ;

do lit(f, format, p) ;

While format[p~ # ")" d o(p plus 7 ; skip lit(format, p))

p plus 7 I undefined) ;

p) proc % trans edit bool = (file f, bool b, string format, re~ int p) ;

(do insertion(f, format, p) ; (format[p] = "(" I

p ~lus ~ ; (b i do lit(f, format, p) ; p plus 7 ; skip lit

(forv~t, p) I skip lit(format, p) ; p ~lus 7 ; do lit(f, format, p)

put string(f, (b I "_7" I ,,_o"))) ; p plus ~) ;

q) proo ~ do insertion = (file f, [7 : int l] char s, ref int p) :

while(p > I i false I: do align(f, s, p) I true I

do lit(f, s, p)) do skip

r) proc % do align = (file f, string s, ref int p) bool :

(int q = p ; int n ; replicator(s, p, n) ;

(s[p] = "x" I to n do space(f) ; 1 I:

s[p] = "~"] to n do backspace(f) ~ 1 i:

s[p] = '~" I to n do new page(f) ; 1 I:

s[p] = "l" i to n do new line(f) ; 1

s[p] = '~" I char o~ f := n ; l) ; p

l : p.plus ~ ; t rue) ;

I:

:= q $ false.

s) proc ~ do lit = (file f, string s, ref int p) bool :

(int q = p ; int n ~ replicator(s, p, n) ; (s[p] = """" I

while(sip ~lus 7] = """" l s[p ~lus 7] = ""'" l true) do

p u t s t r i n g (f , s [p]) ; t r u e I p : = q ; f a l s e)) ;

I O. 5.5- Formatted input

s) ~ in = (file filej tamrof tumrof, [7 : int n] intype x) :

begin string format =

format primary list pack("("+ F o~ tamrof +")", loc int(7)) ;

int. pC7) ;

for k to n --~d° ~.~i~ .

([7 : int 1]s~lout y = ~ m[k] ;

for j t_~ l ~_
([7 : 74] int fr~ne ; int q(p) ; pattern(format, p, frame) ;

(frcwne[7] iint, real, real, co~l, cowl, string, intch, bool)

int: (¢ (ref Lint ii ; (ii ::= y[j] i

tro~s indit L int(file, ii, format, q, frame) ; end)) ~) ;

undefined.

real: (~ (ref L real zx ; (a~c ::= y[j]]

trans indit L real(file, xx, format, q, fr~ne) ; end)) ~) ;

w~efin~.
co~vl: (¢ (ref L con~ zz ; (zz ::= ~/[j] I

~o~s indit L octopi(file, zz, format, q, fr~ne) ~ end)) ~) ;

undefined.

s~ing: (ref strir~ d ss ; ref char co ; E7 : Rome[4]] char t ;

trans indit string(file, t, format, q, frame) ;

(ss ::= y[j] [val ss := t ; end 1: co ::= y[j] i

val co := t[l] ; end)).;

undefined.

intoh: (ref int ii ; (ii ::= y[j] i

~ro~s indit choice(file, ii, format, q) ; end))

undefined.

bool: (ref bool bb ~ (bb ::= ~[j] i

trans indit bool(file, bb, format, q) ~ end)) ;

undefined.

req i n s e r t i o n (f i l e , format , q) ; p p lus 7)) end:

e n d ;

10.5.5. continued

b) Frou % trans indit Lint =

(file f, ref Lint i, strins format, ref int p, [] int. fr) :

(string t ; trans indit string(f, t, format, p, fr) ;

i := L string int(t, 70))

c) Froc % trans indit L real =

(file f, ref Z real x, string format, ref int p, [] int fr) :

(string t ; trans indit string(f, t, format, p, fr) $

x := L string real(t))

d) Froc % trans indit L compl =

(file f, ref L comF1 z, string format, ref int p, [] int fr) :

(string t iint i ; trans indit string(f, t, format, p, f r) .;

z := (char in string("l_", i, t) I

(L string real(t[7 : i - 7]) J_ L string real(t[i + 7 :: 7]))))

e) Froc ~ trans indit string :

(file fj ref string t, [7 : int m] char format,

ref int p, [] int frame) :

begin int n ; bool supp ~ char k ; string x("") ;

o~ ? = (strins s) bool :

(req insertion(format, p) i P > m I false I

int q =p ; replicator(format, p, n) i

(supp := format[p] = "s" I p plus 7) ;

(char in string(format[p], lo c intj s) true I

P :=q i ~alse)) ;

o~ : = (char c) : (x Flus(supp I c I: next =o I c)) i

proc next = char ex~r(get string(f, k) i k) ;

Froo intreal mould = expr

(? "r" ~ sign mould(frame[S]) ; int mould ;

(? "°" I : "."; int mould) i

(? " ~ " I Z " $ 0 " ; sign mou ld (f r oze [6]) ; i n t mould))

Froc sign mould = (int sign) : (sign > 0 1

(? "z" I bool zs(true.), sk(false) i string t("") ;

to n + 7 do(next = "._" I sk :=true ~ (-~zs I undefined)'~l

zs :=false i t ~lu s k) ;

x plus(sign = 2 ^ sk ^ t[7] ~ " " I " + " + t I t) I

x plus(sign :2 ^ next = "._" I "+" I k)) ;

p Flus 7) ;
e

1i0.5-5- continued 2

proc int mould = ex~r

(1 : (? "z" i bool zs (true) ; to n d_o x ~lus

(supp I "0" i: next = "._" ^ zs I "0" I zs := false $ k) ~ 1

? "d" I to_ n d._o x plus(supp I "0" I next) ; 1)) ;

Froc string mould = expr while ? "a" do to n do x Flus

(supp [". " I n e x t) ;

tis: (frGne[7] = 6 I string mould]: intreal mould ; frame[7] > $ I

: '~" ; intrealmould)

t:=x

end ;

f~ pros % trans indit choice =

(file fj ref int c, string format, ref int p) :

(req insertion(f, format, p) ~ p ~lus 2 i c := 7

while-~ ask lit(f, format, p) do

(c Flu s 7 ; format[p] = "," I P plus 7 i undefined) ;

while format[p] ~ ")" d_~(p Flus 7 ~ skip lit(format, p)) ;

p plus ~ ; req insertion(f, format, p)) ;

g) Froo Z truns indit bool =

(file f, ref bool b, string format, ref int p) :

(req insertion(f, format, p) ; (format[p + 7] = "(" I

p p~s 2 ; (b := ask lit(f, format, p) I

p Flus 7 ~ skip lit(format, p) I:-~ ask lit(f, formatj p) I

undefined) l

chur k ~ get string(f, k) ; b := (k = "7" I true I:

k = "o"1 false))
p F lus 7 ; req insertion(f, format, p)) ;

h) ~ % req insertion = (~ls fj [7 : int l] c~r s, re~ int p) :

while(p > 1 1 false J: do align(f, s, p) I true I

req lit(f, s, p)) ~ ski F

i) P~9.q % req lit = (file f, string S, ref int p) bool :

(in~ q = p ; int n ~ replicator(s, p, n) ;

(s/p] = """" Iint r = p ~ to n do_(p := r ;

while(s/p Flus 7] = """" I s[p Flus 7] = """" I true) do

(char k ; get string(f, k) ; k ~ sip] I undefined)) ; true i

p := q ; false)) ;

TU.5.~. con~inue(1 S

j) proc % ask lit = (file f, string s, ref int p) b ool. :

(intc = char o~ f ; int n ; replicator(s, p, n) ;

(s[p] = """" I int r = p ; to n do_(p := r ;

while(sip plus 7] = """" I s[p plus 7] = """"] true) do

(char k ; get string(f, k) ; k # s[p] I l)) ; true.

l: while(s[p plus 7] = """" [s[p plus 7] = """" [true) do skid

char o~ f := c ; false)) ;

I 0.5.6. Binary output

a) proc write bin = ([] outtype x) : put bin(stand back, x) ;

b) proc put bin = (file~ file, [7 : i.nt n] outtype z) :

i~ bin possible[than o~ file] ^ opened o~ file

then i~-~ set possible[than o~ file] thef state def o~ file

then(state get o~ file v -~ state bin o~ file i undefined)

else state def o~ file := state bin o~ file := true ;

state get o~ file := false

for k to n do

([7 : int 1] si~plout y = straightout x[k] ;

for j to ,1 do

([7 : int m] int bin = to bin(file, y[j]) ;

for i to m do(next pie(file) ;

book o~ bfile o~ file[page o~ file, line o~ file,

char o~ file] := bin[i])))

else undefined

c) proc ~ to bin = (file f, si~olout x) [] int :

e a value of mode 'row of integral' whose lower bound is one,

and whose upper bound depends on the value of 'f' and on t~

mode of the value of 'x'; furthermore,

x = from bin(f, to bin(f, z)) c ;

d) proc % from bin = '(file f, [] int y) si~lout :

e a value, if one exists, of a mode from which that specified by

simplout is united, such that y = to bin(f, from bin(f, y)) _e ;

10.5.7- Binary input

a) ~ read bin = ([] intype z) : get bin(stand back, x) ;

b) r~ get bin = (file file, [7 : int n] intype z) :

i~ bin possible[than o~ file] ^ opened o~ file

the.__n i~ -~ set possible [ehan o~ file] thef state def o~ file

then(-~state get o~ file v -~ state bin o~ file I undefined)

else state def o~ file := state bin o~ file :=

state get o~ file := true

for k to n do

([7 : in% l] ref si~plout y = straightin x[k] ;

for j to I do

([7 : int m] int bin = to bin(file, y[j]) ; simplout r ;

for i to m do(next pie(file) ;

bin[i] := book o~ bfile o~ file[page o~ file, line o~ file,

char o~ file]) ;

r := from bin(file, bin) ;

(4 ~(ref Lint ii ; (ii : y[j] I:

val ii ::= r [I i undefined)) ~) ;

(4 (ref L real xx ; (xx ::= y[j] I:

val xx ::= r I 1 [undefined)) ~) ;

(4 (re~..L cowl zz ; (zz ::= y[j] i:

val zz ::= r I I i undefined)) ~) ;

(ref string ss ; (ss ::= y[j] i:

val ss ::= r i I I undefined)) ;

(tel. char cc ; (co ::= y[j] I: valcc ::= r i I i undefined)) ;

(ref bool bb ; (bb ::= y[j] I: val bb ::= rl I [undefined)) ;

l : skip))

undefined ele__£

{But Eeyore wasn't listening. He was

taking the balloon out, and putting it

back again, as happy as could be

Winnie-the-Pooh, A.A, Milne. }

11. Examples
1 1.2. Innerproduct I

1 1. I. Complex square root

A declaration in which oompsqrt is a procedure-with-a-[ccmplex]

parameter-delivering-a-[coruplex]-identifier (Here [complex] stands

structured-with-a-real-named-lett erUr-19tt er -e-and-a-real-named-

letter-i-letter-re.) :

a) proo oompsqrt = (oo~l z) oo~l : o ~he square root whose real

is nonnegative of the oo~plex number z c

b) begin real x = r_e z, y = "~ z

c) real rp = sqrt((abs x + sqrt(x + 2 + ~ + 8))/8) ;

d) real ip = (rp = 0 I 0 I y/(2 × rp)) ;

e) (x ~ 0 I (rp ~ ip) I (abe ip J (~ -> 0 I rp I -rp)))

f) end oom~eqrt

[cc~nplexS-expresslon-calls L8.7. I .b} using compsqrt :

g) oompeqrt(w)
h) oo~sqrt(-S. 74)
i) oompsqrt(-7)

A declaration in which innerproduot7 is a procedure-with-a-inte~al-

parsme ter-and-a-procedure-wit h-a- in tegral-parame ter-de li vering-a-real-

parsmet er-snd-a-procedure-with-a-int egral-paramet er-delivering-a-real-

parsmeter-delivering-a-real-identifier: '

a) r~ innerproduot7 = (int n, proo(int) real x, ~) zeal :

_oomment the innerproduot of two veotors, each with n oo~onente,

x(i)j ¥(i)j i = 7j ...j n, where = and ~ are arbitrary ~xpinge

from integer to real number cogent

-b) been ~ real e(~ong O) $
c) for i to n do s plus ~ x(~) × _~ y(i) ;

e) ~md irmez~roduot 7

Rsal-expr~sslon-calls {8.7.T~_.~ .} using i ~ e r p r ~ o t T :
f) innerproduotT(mj (int J)L: xTEj], (int j)~: ~TEj])
g) innorproduotI (n, nsin, noos)

11.3 • Innerproduct2

A declaration in which innerproduot2 is a procedure-with-a-reference-

to-row-of-real-psrameter-and-a-re ference-t o-row-of-real-psramet er-

delivering-a-real-identifier:

t) ~_~ i~rpro&~2 = (reX7 : ~nt nS real a, b) real :

o ~ i~rpro~t of two veotors a and b'with n elements

b) ~ ~ real s (Zon e o) ;

e) Lot i to n do s Vlue len~, a[i] × ~en H b[i] ;

•) short e

e) ~ i~mez~rod~ot2

Real-expression-cAt I a using innerproduct2:

f) innerproduot2(x7, yT)

g) inner~roduct2(H2[2] , H2[, 3])

1 1 .h • Innerproduct3 f 1 1.6. Euler sn-~,ation

A declaration in which innerproduct$ is a procedure-with-a-reference-

t o-int egral-paramet er-and-a-int egral-paramet er-and-a-procedure-

deliverlng-a-real-paramet er-and-a-procedure-dellverlng-a-real-paramet st-

delivering-a-real- ident i fier:

a) proc innerproduct$ = (re~ i nt i, /nt n, proc real zi, yi) real :

c¢,u,~ent the innerproduct of two vectors whose n elements are the

values of the expressions zi and yi and which depend, in general,

on the value of i c~,u, ent

b) begin long real . s(long O) ;

c) for k to n do(i : : k ; s plus leng x i x leng y i) ;

d) short s

e) end innerproduct$

A real-expression-call using innerproductZ:

f) innerproduct3(j, 8, xl[j], yl[j + l])

11.5. Largest element

A declaration in which abemaz is a procedure

to-lntegral-parameter-and-a-reference-to-integral-parameter-/dentlfier:

a) proc absmaz = (r~] : int m, I : int n] real a, I

b) o result c ref real y, c subscripts c re[int i, k) : 1

comment the absolute value of the element of greatest absolute va~

of the m by n matrix a is assigned to y, and the subscripts of th44!

element to i and k c~m,tent

c) begin y :: -I ;

d) for p to m do for q to n do

e) i~ abe a[p, q] • y then y :: abs a[(i :: p), (k := q)]

f) end abemax

Statement-calls {8.7.1 .c} using absmam:

g) absmax(x2, x, i, J)

h) absmax(x2, x, 129. int, loc int)

8) r~ eul~r : (proc(int) real f, real epsj int tim) real :

b)
c)
a)

e)
z)
g)
h)
i)

d)
k)
l)

comment the sum for i from 7 to infinity of f(i), computed by means

of a suitably refined euler transformation. The su~ation is

terminated when the absolute values of the terms of the transformed

series are found to be less than eps tim times in succession. This"

transformation is parti~larly efficient in the case of a s~ly

convergent or divergent alternating series comment

be~ int n(7), ~; real ran, ds(ep8); [7 : 78] real m ;

real sum((m[7] := f(7))/2) ;

for i from ~ Whi~e(t := (abe ds < eps I t + ; I 7)) ~ tim

begin mn := f (i) ;

for k t__o n ~ begin mn := ((de := ran) +m[k])/2 ;

sum plus (ds

~end;

8Z~

end euler

re[k] := de end ;

:= (abs m. < abe r e [n] A n < l e i

n ~lu8 7 ; rain] :: mm; ran/2 I ran))

An expression-call using euler: ~

m) euler((int i) : (odd i I -7/i I 7/i), 71o-5, 2)

11.7- The norm of a vector

a) proc norm = (reEl : int n] real W real :

_o the euclidean norm of the vector a with n elements _o

b) (~ real s(lon~ O) ;

c) tot k to n do s ~lue leng a[k] $ 2 ;

~) short long sqrt(s))

For a use of norm as an expresslon-call, see 11.8.d.

....... i 11.8. Determinant of a matrix 11-9. Greatest common divisor

a) ~roc det = (ref[1 : int n, 7 : int n] real aj

b) ref[7 : int n] int p) real :

comment the determinant of the square matrix a of order n by the

method of Crout with row interchangeS: a is replaced by its triangul

decomposition 1 × u with all u[k, k] = 7. The vector p gives as

output the pivotal row indices; the k-th pivot is chosen in the k-th

column of 1 such that abs l[i, k]/row norm is maximal comment

c) begin[7 : n] real v; real d(1), r(-7), s, pivot ;

d) for i to n do v[i] := norm(a[i]) ;

e) for k to n do

f) begin int k7 = k - 7 ; ref in_~ pk = p[k] ;

g) reX,] real al = a[, 7 : kT], au = a[7 : kT] ;

h) re~] real ak = a[k], ka = a[, k], apk = a[pk],

i) alk = al[k], kau = su[~ k] ;

j) for i from ~ to n _~_

k) begin ref real aik = ka[i] ;

I) i~(s := ~bs(aik minus innerproduct 2(al[i], kau)) /v[i]) > r

m) then r := s ; pk := i

n) end for i ;

o) v[pk] := v[k] ; pivot := ka[pk] ;

p) for j to n ~

q) begin ref real akj = ak[j], apkj = apk[j] ;

r) r := akj ; akj := i~ j _< k then apkj

s) else(apk4"- innerproduct2(alk, au[: kT, j]))/pivot ~ ;

t) i~ pk # k then apkj := -r

u) end for j ;

v) d ti~s pivot

w) end for k ;

x) d

y) end det

An expression-call using det:

z) det(y2, i7)

An example of a recursive procedure:

a) proc gcd= (int a, b) int :

the greatest common divisor of two integers

b) (b = 0 iabs a J god(b, a ÷: b))

An expression-call using god:

c) gcd(n, 184)

11.10. Continued fraction

An example of a recursive operation:

a) ~ / = ([7 : int n] real aj b) real :

oomment the value of a/b is that of the continued fz~zotion

aT/(b ;_+ a2/~b 2 + ... an/bn)...) comment

b) (n = 1 I a [/] / b [/] I a [1] / (b [1] + a [2 : : 7] / b [2 : : 1]))

A forn~la using /:

c) xT/yl
{The use o f r e c u r s i o n may o f t en be e legant r a t h e r than e f f i c i e n t

as in 11.9 and 11.10. See, however, 11.11 f o r an example in which

r ec~ rs i on i s o f the essence.}

1 1 • 11 • Formula manip~ation

a) begin union form = (ref const, ref var, ref triple, ref call);

b) struct const = (real value)~

c) struct var = (string nmae, real value);

d) struct triple = (form left operand, int operator, form right operand,

e) struct function = (ref v~ bound vat,. form body);

f) struct call = (ref ~nction function name, form parameter);

g) int plus = 7, minus = 2, times = $, by = 4, to = 5;

h) const zero (0), one (?);

i) o~ = = (form a, re~ const b) bool :

(ref const ec ~ (ec ::= a I valec :=: b i false)) ;

3) EE + = (form a, b) form :

(a = zero I b I: b = zero I a I triple(a, plus, b));

k) ~ - = (form a, b) form : (b = zero I a I triple(a, minus, b));

1) ~ x = (form a, b) form :

(a = zero v b = zero J zero I: a = one [b I: b = one l a l

triple(a, times, b)) ;

m) EE/= (form a, b) f o ~ :

(a = zero ^-~(b~=~zero) l zero l: b = one I a I triple(a, by, b));
n) j~ ~ = (form a, ref oons t b) form :

(a = one v(b f=f zero) l one I: b :=: one i a I triple(a, to, b));

o) proc derivative of = (form e, c with respect to c ref var ~) form :

p) begin ref oonst eo ; ref var ev ; ref triple et ; ref call ef ;

q) i~ eo :____: e then zero

r) elsf ev ::= e then(val ev :=: m l one I zero)

s) elsf et ::= e th___~

t)

u)

v)
w)

x)

Y)
z)

form u = left operand o~ et, v = right operand o~ et,

udash = derivative of (u, c with respect to .o x),

vdash = derivative of (v, c with respect to ~ x) ;

case operator o~ et in_

udash + vdash, udash - vdash,

u × vdash + udash × v, (udash - et × vdash)/v,

v × u ~ const(ec ::= v ; value o~ ec - 7) × udash

e s a c

I. 1 1 • continued

~a) e lsf ef ::= e then

~b) ref ~nction f = function nmne o~ el;

.c) form g = parameter o~ e f;

~) ref vary = bound var o~ f;

~e) ~nction fdash (y, derivative of(body o~ f, y)) ;

.f) call(fdash, g) × derivative of(g, x)

.h) end derivative;

.i) proo value of ,= (form e) real :

.~) begin ref const ec ; ref vat ev ; ref triple et ; ref call "el;

~) i~ eo ::= e then value o~ eo

~) clef ev ::= e then value o~ ev

~) clef et ::= e then

m) real u = value of(left operc~d o~ et)j

~) v = value of(right operand o~ et);

.p) ~ case operator o~ et i_n

,~) u + vj u - v, u × v, u / v, e~Cv × In(u)) esao

~) clef ef ::= e then

.s) ref ~nction f = function name o~ el;

.t) value o~ bound var o~ f := value of(parameter o~ el);

.u) value of(body o~ f)

v) end value of;

x) form fjg ; var aC'a'~ skip), b('~'~ skip), x('x'~ skip);

¥) start here:

z) read((value o~ a, value o~ bj value o~ x));

a) f :-- a + x / (b + x) ; g :-- (f + one) / (f-one);

b) print(~value o~ a, value o~ b~ value o~ x,

value of(derivative of(g, .o with respect to o x))))

~) e~_ ezar~le~

1.12. Information retrieval

) begin struct book = (_string title, re~ book next),

auth = (string na~, ref out h next, ref book_ book) ;

) re f book book ; re~ ~ auth, first auth(nil), last auth ;

) string n~e, title ; int i ; file input, output $

) format format : £x3Oal, 80al~ ;

) proc update = ~ ~ val first auth : = : nil

i then auth := first auth := last auth : = auth(name, nile nil)

I el___~ auth := first auth ; while val auth :~: ~/l ~

(name = name o~ auth [known [auth := next o~ auth)

last auth := next o~ last auth := c~th :=

auth(na~, nil,; nil) ;
~own: s k ~ ~ ;

open(input, remote in) ; open(output, remote out) ;
out(output,

'%o. enter, a. new. e~ thor, . type. ""author""

a. spaoe , .jnd. his. name. "l

"to. enter, a. new. book, . t~pe. "'~gook ""j . a. spaoe , .

the.name.of, the. au thorn . a. new. line. and. the. tit le . '~
" or " " f ._a._l~st~ng._of. the.books.by._an, author,, t~pe. " " l i s t " ' ; .

a. space , ._and. his. nams. "l

"t " o._find, the.author, of.a.book, t e ""~'. , , • yp • ~ .rid ~ .
a.new, line. and. the. title. "l

"to. end~.t~pe. "~a,. "l~ """end""") ;

alient: in(input, ~c("author/.', '~ook"~ "list'; "find"~ "end"~ "")~ i) •

case i in author, ~e~k, list, find, end, error esac ;

: tuthor: in(input, format, harM.) u p d a t e , client • =b I ; " ;

~: in(input, format, (none, title)) ; update ;

i~ val book o~ auth :=: nil the__~ book o~ au~ :=| ~ok(~it~e~

else book := book o~ auth ; while val next o~ book :#: nil do

ca - (title = title o~ book I client I book := nemt book)

(title # title o~ book I next o~ book := book(title~ nile
; ~lient ;

11.12. continued

aa) list: in(input, format, name) ; update ;

ab) outCoutput, ~"author:."$Oall~ n~ne) ;

ae) ~ Val f i r s t o~ a u t h :=: n i l

ad) then put (output, "no~vub l icat ions ")

ae) else while val book :#: nil do

af) begin i~ line number(output) = max line[remote out]

~) then out(output, ~47k "continued. on. next.page ,~

"author :."$0a4 7 k "continued "l l ~ n~ne)

ah) ~ ; out(output, ~BOal~ title o~ book) ;

ai) book := next o~ book

aj) end

a~) ~ ; c l ient ;

al) find: in(input, ~I80al~, title) ; c~th :: first oath ;

am) while val auth :#: nil do

an) begin ~ook := book o~ auth ; while val book :~: nil do

~) i~ title = title o~ book

ap) then out (output, ~l "author:. "$Oa~

name o~ auth) ; client

aq) else book := next o~ book

ar) ~ ; auth := next o~ auth

as) end ; to 2 do new line (output) ;

at) putCoutput, '~nknown") ~ client ;

au) end: new pe~e(out~zt) ; put(output, "si~d.off") ;

av) close (input) ; close (output).
p~t

aw) error: now line(output) ;~(out~ut, '~istake,.tr~._again. ") ;

~) new line(input) ; client

~) end authors and titles enquiry system

{And what impossibility would slay

in common sense, sense saves smother way.

All's well that ends well, W. Shakespeare.)

i z . Glossary

Given below are the locations of the first, and sometimes other,

instructive appearances of a number of words which, in Chapters I up to

10 of this Report, have a specific technical meaning. A word appearing

in different grammatical forms/(e.g. "conversion", "convert", "converted

"converting") is given once, usually as infinitive (e.g. "convert").

action 2.2 ; 2.2.5

adjusted from 2.2.4.1 .h

agree 5.5. I

ALGOL-68 4.~

alternate I 0.5.1

applied 4.1.2.a

appoint 6.0.2. a

arithmetic 2.2.3.1 .a

assign 2.2.2.1; 8.8.2.c

asterisk 1.1.2.c

automaton I. 1. I. a

backfile I0.5. I

capital letter I. I. 3. a

case 9.4.c

Ch.,~. e l 10 .5 • 1

closed I0.5. I

collateral action 2.2.~5

colon 1.1.2.c

co---A 1.1.2.b

compile 2.3. c

completed 6. O. 2. a

component of 2.2.2.h, k

composite 3.1.2.d

computer I. 1.1. a

connected to ~.4.3.b

constituent I. I .6. d; 2.2.2.b

contain 1.1.6.b; 2.2.2.b

context conditions 4.4

conversion key 10.5. I

convert 5.5. I

define 2.2.2.c; h.1.2.a, b

describe 2.2.3.3.b

descriptor 2.2.3.3.a

developed 7. 1.2.b

direct production I. 1.2.c

divided by 2.2.3.1.c ; I0.2.3.m

edit 5- 5. I

elaborate 1.1.6.e

elaborate collaterally 6.3.2. a

element 2.2.2.k; 2.2.3.3.a

elementary 2.2.5; 6.4.2.c

end of file I0.5.1

English language I. I. I .b

environment enquiry 10.a; 10.1

equivalent to 2.2.2.h, j

extended language 1.1.1.a; 1.1.7

extension I. I. 7

external object 2.2.1

false 2.2.3.1.e

field 2.2.2.k ; 2.2.3.2

file 5.5.1; 10.5.1

follow I. I. 6. a

formal language 1.1.1.b

format 2.2.3; 2.2.3.4

halted 6.0.2.a; I0.4.a

hardware language I. I. 8.b

hold 2.2

home 4. I. 2. b

human being I. I. I. a

identification condition 4.4. I

1 ~ .continued

identify 2.2.2.b

Implementation 2.3.c

index 2.2.3.3.a

of the same mode as 2.2.2.h, i

opened 10.5.1

operator-applied 4.3.2.a

indication-applied 4.2.2,a operator-define 2.2.2.c; 4.3.2.a,
a

indication-define 2.2.2.c; 4.2.2.a, b outer scope 2.2.4.¥.a, e, d

indit 5.5. I

initiate 2.2.2.g; 6.0.2.a

Inner scope 2.2.4.¥.a, c, d

input 5.5.1; 10.5.3, 5, 7

input-compatible 5.5. I

instance 2.2. I

internal object 2.2. I

in the sense of numerical analysis

2 . 2 . 3 . 1 . c

integral equivalent 2.2.3.1.f

interrupted 6.0.2.a, b

length number 2.2.3.1.b

list of metanotions I. 1.3.b

list of notions I. 1.2.b

lower bound 2.2.3.3. b

lower state 2.2.3.3. b

meaningful 4.4

met alanguage 1.1.3.a

metanotion 1. I. 3. a

minus 2.2.3.1.c; I0.2.2.g

mode 1.1.6.c; 2.2.4.1

mode conditions 4.4.2

multiple value 2.2.3; 2.2.3.3

name 2.2.2.1; 2.2.3; 2.2.3.5

nil 2.2.2.1; 2.2.3.5.a

notion 1.1.2.a

object 2.2

object program 2.3. c

occurrence 2.2. I

o~Tset 2.2.3.3.b

output 5.5.1; 10.5.2, h, 6

output-compatible 5 - 5 • I

paranotion 1.1.6.c

permanent 2.2.2

plain value 2.2.3; 2.2.3.1

point 1.1.2.c

portrayal 2.2.4.1.d

possess 2.2.2.d, e, f

possibly intended 2.3.c

pragmatic 1.3

precede 1.1.6.a

preelaborate I. I. 6. f

production 1.1.2.e; 1.1.3.d

production rule I. 1.2.a

proper 4.4

protected 6.0.2.d

publication language 1.1.8.b

quintuple 2.2.3.3.b

reach 4.4.3. a

refer to 2.2.2.h' 1

related to 2.2.4.1.i

relationship 2.2; 2.2.2

representation I.I. 8.a

representation language

1.1.1.a; 1.1.8

required 5.5. I

resumed 6.0.2.a; I0.0.4.b

routine 2.2.2; 2.2.3.4

scope 2.2.3.5.a; 2.2.4.2

12~continued 2

select 2.2.3.2; 2.2.3.3.a

semicolon 1.1.4

serial action 2.2.5

smaller than 2.2.2.h, j

small letter 1.1.2.a

standard declaration 10; 10.a

standard file I0.5. I. 2

standard mathematical constant

or function 10.a; 10.3

standard operation 10.a; 10.2

standard priority 10.a; 10.2.0

straighten 10.5.0.2

strict language 1.1.1.a; 1.1.2.a

stride 2.2.3.3.b

string 5.5.1

structured from 2.2.4.1.j

structured value 2.2.3; 2.2.3.2

sublamguage 2.3. c

subvalue 2.2.2.k; 2.2.3.3.c

successor 6.0.2.a

supersede 2.2.3.3.b; 8.8.2~a

suppressed 5.5- I

symbol I. 1.2.d

synchronization operation 10.a; 10.4

terminal production

1.1.2.f; 1.1.3.e; 1.1.6.a

terminate 6.0.2.a

textual order 1. I. 6. a

ti~es 2.2.3.1.c, 10.2.3.1

transcribed from 5.5. I. I

transcribed onto 5.5.1. I

transput 5.5.1

transput declaration 10.a; 10.5

true 2.2.3.1.e

undefined I .1.6.g

uniqueness conditions 4.4.3

united from 2.2.4.1.h

upper bound 2.2.3.3. b

upper state 2.2.3.3.b

value 2.2.1; 2.2.2.e, f, g; 2.2.3

widen 2.2.3.1.d

written 5.5. I

{Denn eben, wo Begriffe fehlen,

Da stellt ein Wort zur rechten Zeit sich ein. i

Faust, J.W. yon Goethe.

EE. Ephemeral Epilogue

EE.I. Errata {Cuiusvis hominis est errare, nullius,

nisi insipientis in errore perseverare.

Orationes Phillippicae, M.T. Cicero.)

EE. I.I. Syntax

a) errata : erratum sequence.

b) erratum : location list, change.

c) location : line number ; fragment.

d) line rumber : set off, shift option.

e) set off : section, paragraph option.

f) section : integral denotation, point symbol, section option.

g) paragraph : TAG. "

h) shift : plusminus, integral denotation.

i) fragment : top, up to symbol, bottom.

j) top : line number.

k) bottom : line nigher.

i) change : instead of symbol, old text denotation,

substitute symbol, new text, please symbol.

m) old text denotation : old'text ; begin of old text,

query symbol, query symbol, query symbol, end of old text.

i

EE. 1 . 2 . Representations

symbol representations

instead of symbol

substitute symbol +

please symbol

query symbol ?

{ Examples :

b) 15.2.3.c-7 ~ x.y ÷ x.z x ;

I~.2., I~.2.+3, 14.2.+7, 15.2.3.c-7 ~ a ~ b ~ ;

0.:11.11.bc . Introduction ??? example. * ~ ;

c) 15.2.3.c-7 ; 0.:11.11.bc ;

d) 14.2. ; 14.2.+3 ;

e) 14.2. ; 15.2.3. c ;

f) 14.2. ;

g) c;

EEI.2. continued

h) +3 ; -7 ;

i) 0.:11.11.bc •

J) ~ x.y ~ x.z ~ ;

k) x.y ; Introduction ??? example. }

~E. 1.3. Semantics

~) Errata are elaborated in the following steps:

~tep I: The errata are considered ;

:tep 2: If the considered errata contain a locatlon-list containing a

comma-symbol, then other errata are considered instead which are the

same sequence of Report-tokens as would be obtained by replacing that

c°mua-symbol in the considered errata by the change following that
location-list, and Step 2 is taken •

~ep 3: The constituent erratuvs of the considered errata are elaborated
collaterally.

An erratum whose constituent location-list does not contain a comna-

• bol is elaborated in the following steps :

ep I : The erratum is considered ;

~p 2: That erratum is considered instead which is the same sequence of

~eport-tokens as would be obtained by replacing each empty constituent

:hlft-option in the considered erratum by a plus-symbol followed by a
ero-symbol ;

P 3: That erratum is considered instead which is the same sequence of

~Port-tokens as would be obtained by replacing, in the considered

~ratum, each location not containing an up-to-symbol by {the llne-

mber which is} that location followed by an up-to-symbol followed by
;he llne-number which is} that location ;

, I~: Letting it(it) stand for the line of the Report possessed by the

t~off contained in the top (bottam) contained in the considered

~at~n, vt(vb) for the value of the integral-denotation and st(st) for

PlUsmir~s contained in the shllq~ contained in the top (bottom)

~tained in the considered erratum, then an upper line (lower line)

sought in the Report at a distance of vt(vb) lines from lt(ib) in

direction of the end or begin of the Rel~rt depand/ng upon whether

st) is a plus-symbol or minus-symbol, and, if the upper line and

er line are found and if the upper line is not closer to the end

EE. I. 3 continued

of the Report than the lower line, then the set of consecutive lines

the first (last) of which is the upper line (lower line) is considered

• and ~tep 5 is taken; otherwise, .the f~rthe~ .e.!aboration .i~ undefined.

Step 5: If the cons~uen~ o±a-~ex~-aeno~a~1on of the consmlmuen~ change

of the considered erratum is an old-text and the considered set of linq

comprises exactly one sequence of Report-tokens which is the same as

that old-text, or if that old-text-denotation is not an old-text and

the considered set of lines comprises exactly one sequence of Report-

tokens which is the constituent begin-of,old-text of that old-text-

denotation followed by a nonempty sequence of Report-tokens followed

by the constituent end-of-old-text, then that sequence of Report-toker~

is replaced by a new appearance of the sequence of Report-tokens which

is the constituent new-text of the constituent change of the considere,

erratum, and Step 6 is taken; otherwise, the further elaboration is

undefined

Step 6: The title of th@ Report and all titles of the Chapter, Section

and paragraph comprising the considered lines are made to refer to the

Report, Chapter, Section and paragraph as modified in Step 5, and the

elaboration of the erratun is complete.

~.2. Correspondence with the Editor

EE.2.1. Example of a letter to the Editor

Dear Editor,

p~

F ̧

Amsterdam, 16 Feb. 196~

(Ach~ve, petit Jean; c'est fort bien d~but~.

Les Plaideurs, J. Racine.

This morning I received with thanks the Draft Report on ALGOL 68 and

read it with interest. Please convey my feelings of deep appreciation

to your co-authors for the fine work that they achieved. I take the

liberty to suggest the following amendments, which are of a purely

descriptional nature, for the final Report:

2.1. continued

.1.u, 5.~.I.b, 7.1.1.z, 8.1.1.b, 8.1.1.i, 8.2.1.1.d, 8.2.2.1.a, 8.7.1.b+I

delivering a ~ x

.2. continued +2:3, 8.2.0.1. continued +12, 8.2.0.1. continued +24,

.0.1. continued +25, 8.2.0.1. continued +26, 8.2.0.1. continued +27,

.2.+8, 11.1.+2, 11.2.+2, 11.2.+3, 11.2.+4, 11.3.+3, 11.~.+~

dellvering-a- ÷

~.3. +3 . dellvering-a-???-delivering-a

real-parameter-and-a-procedure

1.q, 1.2.1.u, 1.2.2.h, 1.2.4.n, 1.2.~.n+I, ~.3.1.b, 8.1.1.a, 8.1.1.c,

I.h+I, 8.1.1.j ~ DELIVETY + MODETY

I .h ~ DELIVETY : dep DELIVETY , MODETY : dep MODETY ~ i

2. k ~ k)???. ÷ ~ ',i

1.1.b ~ called???. ÷

called MODETY FORM : fitted procedure MODETY FORM. ~ i

1.1.c ~ c)???. +

~ese amendments do not change the language at all, but do diminish

number of rules by two and, moreover, delete over three hundred

ingless letters. Of course, the deletion of rules 1.2.2.k and

I .I .c will cause some changes in the paragraphs of the rules

owing them, in the examples and, possibly, in some cross references, i~i

d you be so kind to take care of this yourself if you accept these ~ii

dment s ?

f you answer this letter at all, would you then tell me why you !

~ot unify statements and expressions by considering statements as ~-

~y-expressions like in Orthogonal Design [h]?

Yours sincerely,

A. van W.

EE. 2.2. Reply by the Editor to the letter in EE.2.1

Amsterdam, 16 Feb. 1968.

Dear A. v a n W.,

Many thanks for your prompt reaction to the receipt of the Draft

Report. As to your amendments, I fully agree with them; actually, I had

also found these very changes myself, but too late for incorporation in

the text. I shall do my best to have them incorporated in the final

Report and, of course, to make the necessary changes you asked for in

paragraphs, examples and cross references.

Now about the statements. We had much trouble understanding the

coercion process, dear me; especially skip, jump and nlbil caused us a

lot of ambiguous parsings. At an early stage, we separated the statements

from the expressions again because we thought that this alleviated the

problem. Now that the tempest has passed, I see that you can very well

unify them again to great advantaEe. I shall sketch it for you, since

you seem so much interested in our work. The errata are assumed to be

elaborated after yours :

6.0. I.h ~ . + •

i) SOME statement : SOME void expression.

1.2.1.u ~ u)???. ÷ u) RESULT : MODE ; void.

1.2.1.q , 1.2.h.a, 1.2.h.n, 1.2.4.n+I ~ MODETY * RESULT

1.2.3.b ~ b)???. ~ b) CLAUSE : RESULT expression.

6.0. I. e ~ SS~E staten~nt. * SOME void expression.

6.1.1.e+I ~ statements ~ void expressions

6.2:6.3.-I ~ Unitary statements???6.3.2.a).} * ~

7.1.1.w, 7.~.I.x, 7.1.1.z+I ~ tail * void tail

8.0.1.a:8.0.1.e+1 ~ a)???relation.

a) COERCETY unitary RESULT expression:

COERCETY RESULT formary ; COERCETY RESULT confrontation.

b) COERCETY RESULT fornmry :

COERCETY RESULT ADIC formulation ; COERCETY RESULT primary.

c) COERCETY MODE ADIC formulation : COERCETY MODE ADIC formula.

d) void ADIC formulation : void ADIC formula ; called void ADIC formula ;

NONPBOC ADIC formula ; called NONPROC ADIC formula.

e) hip FORCED MODE ADIC formula : FORCED MODE ADIC for~nla.

EE.2.2. continued

f) void confrontation : MOEE confrontation.

g) hip FORCED MODE confrontation : FORCED MODE confrontation.

h) MODE confrontation : MODE assignation ;

MODE conformity relation ; MODE ident~ relation.

8.1.1.a:8.1.1.j ~ a)???dep MODETY.

a)e COERCETY formula : COERCETY HESOIT ADIC formula.

b) RESULT PRIORITY formula : I~0DE PRIORITY operand,

procedure with a LMODE parameter and a RNDDE parameter

RESULT PRIORITY operator, ~ODE PRIORITY plus one operand.

c)O operand : MODE ADIC operand.

d) MOEE PRIORITY operand :

adjusted MODE PRIORITY formula ; MODE PRIORITY plus one operand.

e) MODE PRIORITY NINE plus one operand : MODE monadic operand.

f) MODE monadic operand :

adjusted MODE monadic formula ; hip adjusted MODE primary.

g) RESblT monadlc formula : RESULT dep ; procedure with a RHSDE

par~neter RESULT monadic operator, RNDDE monadic operand.

h) MODE dep :

value of symbol, peeled reference to MODE monadic formula ;

value of symbol, hip peeled reference to mode primary.

i)e depression : MODE dep.

8.2.1.1.b:8.2.1.1.d ~ b)???d)

b) c~S~ed COERCEND : fitted procedure COERCEND.

c).

8.2.1.1.e ~ e) ~ d)

8.2.2.1.b ~ b)???. ÷

8.3.1.a:8. S.1.a+1 ~ a)???cohesion. *

a) COERCETY RESULT primary : COERCETY CLOSED RE~0LT expression ;

CO~CETY RESULT cohesion ; RESULT c~l].

8.3.1.e ~ e)???- ÷

e) skip : skip symbol.

f) Jump : goto symbol option, label identifier.

g) reference to MODE nihil : nil symbol.

h) void cohesion : NONPROC cohesion ; void expression call ; skip ; Jump.

i) void call : called void cohesion ; called NONPROC cohesion.

EE.2.2. continued 2

Of course, some examples, cross references and section headings must be

modified appropriately, and the scanty Semantics of 6.2.2 must be inserted

into 8.3.2, where it fits much better.
The effect is quite satisfying: one rule less, a whole section {6.2) gone,

and a much cleaner set up. This is, of course, also for the final Report.

Yours for ever,

Editor.

EE.2.3. Second example of a letter to the Editor

Somewhere, I June 1968.

sir,

it stinks,

yours,

A.N. Onymous.

EE.2.~- Reply option by the Editor to the letter in EE.2.B

{Empty(the letter was not received in time, see PP.3.b). }

EE.2.5. Third example of a letter to the Editor

From Amsterdam to Calgary, 30 Jan. 1968

Dear Editor,
Please consider the following errata to have been elaborated:

1.2.4.h+3 ~ Rule c + Rule d ~

2.2. +3 ~ Carroll ~ Carroll. ~

2.2.+4 ~ "computer" ÷ computer ~

2.2.2.1+2 ~" { 8 . 8 . 2 . c } -* (8 . 8 . 2 . c) ~

2.2.3.1.b+~, 2.2.3.5.a ~ called ÷ ~

2.2.3.1. c+6 ~ divided * "divided ~

2.2.5.+3

3. I. I. c+6

3.1. I.d-I

3.1 .2 . d+2

4.1.1.e+3
4. I. 2. a+6

~.4.+4

either * ~

cp&ital * capital ~

1.2.2.t * 1.2.2.s ~

"is ÷ is"

"ALGOL 68 programs" * "ALGOL-68" programs ~

2.5. continued

~.3.e-5 ~ mux ÷ mux = N

;.Step. 5+3 i each ÷ the first and last constituent m

~.2. a+3 * successor ÷ "successor"

,.2.e ~ 10.~.b ÷ 10.~.a

.2.c+2 ~ 10.~.a ÷ 10.~.b

.1.o+1 ~ option ~

.1.p+1 x . ÷ ; ~TY.

.2.b+I :3 ~ either? ? ?symbols + an actual-declarer or formal-declarer ,

.2.-I " 9.2b ~ 9.2.b

• I. d ~ ADIC formula * confrontation

.2. continued+1 ~ operator-tokens as ÷ operators

.0. I. continued+9 ~ 8.1.1.b, ÷ 8.1.1.b, c

,0. I. continued+1~, 8.2,0. I. continued+15, 8.2.0. I. continued+16,

0.1. continued+17 ~ 8.1.1.c ÷ 8.1.1.e

0.1. continued+18 . 8.1.1.d ÷ 8.1.1.f

0.1. continued+19 N 8.1.1.e * 8.1.1.g

0.1. continued+26 . 8.3.1.c ÷ 8.3.1.b

2.2. eontinued+13 . coercend ÷ condltlonal-expression

2.2. continued+t3 . (x) ÷ the routine (x) or the routine

2.2. continued+16 . coercend ÷ serial-expression .

6 . 2 . - 1 M 6SO.O) + e ,eGo)} .

2.d+7 . structure (8,5.1.f) ÷ veld (8.5.1.g)

1.f . : ÷ : MDE~ veld.

g) MODE veld :

~ . - 1 ~ f) ÷ g)

-~.a+1 ~ expressions and structures ÷ velds ~

-~.a+2 ~ ; ÷ , where the elaboration of a structure-pack
I

is that of its constituent structure ;

:.b+2:3 . , the???; + ; ~

!6 . empty. ~ empty.

d) Each representation of a symbol appearing in Sections

9. I up to 9.5 may be replaced by any other representation,

if any, of the same symbol:

mode ÷ made

b.-1

1.+8

2.b+14, 10.5.3.c-J~ ~ : i n t n ÷ 7 : i n t n

EE. 2.5. continued 2

I0.5.2.b+16 * 7 : int n ÷ : int n i

10.5.3. b+18 ! StZw~ng ÷ ~

10.5.3. c-2 ~ get???~ ÷ . -17

11.1 I. x m-nipluation ÷ manipulation -

. We plan to submit, if necessary, (a) loose-leaf letter(s) comprising

other errata.

Collegialiter,

The authors.

EE.2.6. Reply by the Editor to the letter in EE.2.5

Amsterdam, 31 Jan~ 1968,
Dear Authors,

The errata comprised in your letter of 30 Jan. 1968 and also those,

possibly, comprised in (an) other letter(s) by you if communicated to %

the readers of the ALGOL Bulletin, are considered to have been elaborate

Ours,

Editor.

