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PP. Provisional Prologue

PP.1. History of the Draft Report {Habent sua fata libelli.

De litteris, Terentisnus Maurus.}

a) Working Group 2.1 on ALGOL of the International Federation for
Information Processing has discussed the development of "ALGOL X", a
successor to ALGOL 60 [3] since 1963. At its meeting in Princeton in
May 1965, WG 2.1 invited written descriptions of the language based on
the previous discussions. At the meeting near Grenoble in October 1965,
three reports describing more or less complete languages were amongst
the contributions, by Niklaus Wirth [5], by Gerhard Seegmiiller [L4] and
by Aad van Wijngaarden [6]. In [4] and [5], the descriptional technique
of [3] was used, whereas [6] featured a new technique for language design
and definition. Another significant contribution was a paper by Tony
Hoare [2].

b) At meetings in Kootwijk in April 1966, Warsaw in October 1966 and

Zendvoort near Amsterdam in May 1967, a number of successive approximations

to a final report were submitted by a team working in Amsterdam,
consisting first of A. van Wijngaarden and Barry Mailloux [7], later
reinforced by John Peck [8], and finally by Kees Koster. A rather complete
version [9] was used during a course on ALGOL 68 held in Amsterdam in
the end of 1967. This course served as a test case and the present Draft
Report was made on the basis of it using the experience of explaining
the language to a skilled audience.

¢) The authors acknowledge with pleasure and thanks the whole-hearted
cooperation, support, interest, criticism and violent objections from
members of WG 2.1 and many other people interested in ALGOL {Rev.

3.15, 16}, Déserving special mention are Jan Garwick, Jack Merner,

Peter Ingerman and Manfred Paul for [1] and above all Miss Hetty
Schuuring for still smiling after several years of most demanding

typing of a continuously varying manuscript. An occasional choice of

a, not inherently meaningful, identifier in the sequel may compensate
for not mentioning more names in this section.

d) The dogmatic, perhaps pedantic, approach of the authors, and the many
errors they made, caused this Draft Report to- appear late; they are

convinced, however, that their approach is the right one.

PP.2. Membership of the Working Group

{Verum homines notos sumere odiosum est.

Pro Roscio Amerino, M.T. Cicero.}

At this moment, the members of WG 2.1 are:

F.L. Bauer, H. Beki¥, L. Bolliet, E.W. Dijkstra, F.G. Duncan, A.P. Ershov,
J.V. Garwick, A. Grau, C.A.R. Hoare, P.Z. Ingerman, E.T. Irons, C. Katz,
1.0. Kerner, P.J. Landin, S.S. Lavrov, H. Leroy, J. Loeckx, B.J. Mailloux,
A. Mazurkiewicz, J. McCarthy, J.N. Merner, S. Moriguti, P. Naur, M. Nivat,
M. Pacelli, M. Paul, J.E.L. Peck, W.L. van der Poel (Chairmen), B. Randell
D.T. Ross, K. Samelson, G. Seegmiller, W.M. Turski (Secretary),

A. van Wijngaarden, N. Wirth, M. Woodger and N. Yoneda.

PP.3. Distribution of the Draft Report

{A perfect judge will read each work of wit
with the same spirit that its author writ.

An Essay on Criticism, A. Pope.}

a) The Draft Report is, on request of WG 2.1, distributed as a supplement
to ALGOL Bulletin 26 in order that all people interested in ALGOL have
insight in the Draft Report and can send remarks to improve the final

Report. These remarks should be sent to:

EDITOR ALGOL 68,
Mathematisch Centrum,
2e Boerhaavestraat 49,
AMSTERDAM-O, HOLLAND.

b) All remarks will be considered, but not necessarily individually
answered. If they are received in time and if they seem relevanﬁ, then
they will be taken into account in drafting the final Report, which wi%l
be submitted for approval to WG 2.1, Technical Committee 2 on Programming

Languages and the General Assembly of IFIP.

¢) It is pointed out that anyone, even an author, is invited to send
remarks. In order to make it at all possible to review all incoming
remarks, one is, however, requested to use, as far as feasible, the
method of indicating errata given in the Ephemeral Epilogue; this
method will be clear after reading at least a part of the Draft Report.



d) Before reading all of the Draft Report, one should first read
Sections EE 2.5, 6.
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0. Introduction
0.1. Aims and principles of design

a) In defining the Algorithmic Language ALGOL 68, the members of
Working Group 2.1 of the International Federation for Information
Processing express their belief in the value of a common programing

language serving many people in many countries.

b) The language is designed to communicate algorithms, to execute them
efficiently on a variety of different computers, and to aid in teaching

them to students.

¢) The members of the Group, influenced by several years of experience
with ALGOL 60 and other programming languages, hope that the following

has been achieved:
0.1.1. Completeness and clarity of description

The Group wishes to contribute to the solution of the problems of
describing a language clearly and completely. It is recognized, however,
that the method adopted in this Report may be difficult for the

uninitiated reader.
0.1.2. Orthogonal design

The number of independent primitive concepts was minimized in order that
the language be easy to describe, to learn, and to implement. On the

other hand, these concepts have been applied "orthogonally" in order to
meximize the expressive power of the language, and yet without introducing

deleterious superfluities.
0.1.3. Security

ALGOL 68 has been designed in such a way that nearly all syntactical and
many other errors can be detected easily before they lead to calamitous
results. Furthermore, the opportunities for making such errors are

greatly restricted.
0.1.4k, Efficiency

ALGOL 68 allows the programmer to specify programs which can be run
efficiently on present-day computers and yet do not require sophisticated

and time-consuming optimization features of a compiler; see e.g. 11.8.



)el.4.1. Static mode checking

[he syntax of ALGOL 68 is such that no modé checking during run time

s necessary except during the elaboration of confarmity-relations {8.9}
the use of which is required only in those cases in which the programmer
>xplicitly makes use of the flexibility offered by the united mode

feature.

d.1.4.2. Independent compilation

ALGOL 68 has been designed such that the main line programs and procedures

can be compiled independently of one another without loss of object

program efficiency, provided that during each such independent compilation

specification of the mode of all nonlocal quantities is provided; see

the remarks after 2.3.c.
0ele4.3. Loop optimization

Iterative processes are formulated in ALGOL 68 in such a way that
straightforward application of well-known optimization techniques
yields large gains during run time without excessive increase of

compilation time.

0.2. Comparison with ALGOL 60

a) ALGOL 68 is a language of wider applicability and power than ALGOL 60. |

Although influenced by the lessons learned from ALGOL 60, ALGOL 68 has
not been designed as an expansion of ALGOL 60 but rather as a completely
new language based on new insights into the essentiel, fundamental

concepts of computing and a new description technique.

b) The result is that the successful features of ALGOL 60 reappear in
ALGOL 68 but as special cases of more general constructions, along
with completely new features. It is, therefore, difficult to isolate
differences between the two languages; however, the following sections

are intended to give insight into some of the more striking differences.
0.2.1. Values in ALGOL 68

a) Whereas ALGOL 60 has values of the types integer, real, boolean and
string, ALGOL 68 features an infinity of "modes", i.e. generalizations

of the concept type.

0.2.1. continued

b) Each plain value is either arithmetic, i.e. of integral or real mode

and then it is of one of several lengths, or it is of boolean or
character mode.

¢) In ALGOL 60, composition of values is possible into arrays, vhereas
in ALGOL 68, in eddition to such "multiple" values, also "gtructured"
values, composed of values of possibly different modes, are defined and
manipulated. An example of a multiple value is a character array,«which
corresponds approximately to the ALGOL 60 string; examples of structured

values are complex numbers and symbolic formulae.

d) In ALGOL 68, the concept of a "pame" is introduced, i.e. a value
vhich is said to "refer to" amother value; such a name-value pair
corresponds to the ALGOL 60 variable. However, any name may teake the
value position in a name-value pair and thus chains of indirect addresses

can be built up.

e) The ALGOL 60 concept of a procedure body is generalized in ALGOL 68
to the concept "routine", which also includes the formal parameters,
and which is itself a value and therefore can be manipulated like any

other value; the ALGOL 68 concept "eormat" has no ALGOL 60 counterpart.

f) In contrast with plain values and multiple and structured values
composed of plain values only, the significance of a name, routine or
format or of & multiple or structured value composed of names, routines
or formats, possibly amongst other values, is, in general, dependent on
the context in which it appears. Therefore, the use of names, routines

and formats is subject to some natural restrictions related to their
"scope".

0.2.2. Declarations in ALGOL 68

a) Whereas ALGOL 60 has type declarations, array declarations, switch
declarations and procedure declarations, ALGOL 68 features the "identity-

declaration” whose expressive power includes all of these, and more. In
fact, the identity-declaration declares not only variables, but also

constants, of any mode and, moreover, forms the basis of a highly efficien

and powerful parameter mechanism.



2.2. continued . -
0.2.6. Some particular constructions 1n ALGOL 68

compound gtatement and pa.renthesized
josed-clause". A closed-clause

Similarly, the ALGOL 68

a) The ALGOL 60 concepts of block,

M in ALGO "mod .
oreover, 1 L 68, = ~declaration” permits the construction
expression are unified in ALGOL 68 into "c

new modes from a_lre_a.dy existing ones. In particular, the modes of
mey be an expression and possess a value.

1tiple values and structured values may be defined this way; in addition
)
nassignation", which is a generalization of the AIGOL 60 as

- . 2« .l
mion of modes may be defined for useLln an identity-declaration signment

lowing each value referred i
eu\hgvg to by a given name to be of one of the statement, may be an expression and, as such, also possesses a value. .
rebatuent modes.

L 68

) The ALGOL 60 concept of subscription is generalized to the ALGO

concept of "indexing", wh
also of subarrasys with the same or any smaller

Finally, in ALGOL 68, a "oriority-declaration"” and an "operation- .
ich allows the gelection not only of a s:gngle

claration" permit the introduction of new operators, the definition
. element of an array but

their operation and the extension or revision of the class of
dimensionality and with po

erards applicable to already established operators.

ssibly altered bounds.

¢) ALGOL 68 provides not only the multiple values mentioned in 0.2.1.c,

but also "colla.teral—expressions" which serve to compose these values

2.3, Dynamic storage allocation in ALGOL 68

ereas ALGOL 60 (apart I " . L.
(apart from the so-called "own dynamic arreys") implies from other, simpler values.

"gtack"-oriented storage-sllocation regime, sufficient to cope with a
d) The ALGOL 60 for statement is modified into a more concise and

atically (i.e. at compile time) determined number of values, ALGOL 68
efficient "repetitive statemen ",

ovides, in addition, the ability to generate a dynamically (i.e; at run
al expression and conditional statement, unified

{

e) The ALGOL 60 condition:
into a "eonditional-clause", are improved by requiring them to end with

the two alternative clauses admit the same

the corditional-clauge is generalized
excerption .
gereetwien from an arbitrary

me) determined number of values, which ability implies the use of

ditional, well established, storage-allocation techniques.
a closing symbol whereby

syntactic possibilities. Moreover,
into a "case''clause* which allows the efficient
nding on the value of an integral expression.

2.h. Collateral elaboration in ALGOL 68

lereas, in ALGOL 60, statements are "executed consecutively", in
GOL 68 "phrases" are "elaborated serially" or "ecollaterally". This last number of clauses depe

quantities and

eility is conducive to more efficient object programs under many £) Some 1 ful ALGOL 60 N N
e less success concepts, such as own

integer labels have not been included in ALGOL 68, and s

designational expressions and switches do not appear as such in ALGOL 68,
more general, constructions.

rcumstances, and increases the expressive power of the language.
€ ome concepts like

wcilities for parallel programming, though restricted to the essentials

vi .
view of the none-too-advanced state of the art, have been introduced. but their expressiv .o ipcluded i th
ssive power is included in other,

2.5. Standard declarations in ALGOL 68 { ‘
True wisdom knows

e ALGOL 60 standard functi i i . .
ith many other standard decl::.::'a::.:nsa:.uA;Zf;::e:h:eAer:L"2: ?’long Lt mist COnpASe
1quiries®, which make it possible to determine certain v;:(‘mment some nonsensf.
1 implementation, and "transput" declarations, which aim?e e o 88 & COmpronieTs .
>ssible, at run time, to obtain data from a.nd’to del'm - lest-fogll..s sl.muld fal
iver results to to find it wise.
Grooks, Piet Hein

xternal media.



. Language and metalanguage
1. The method of description
1.1. The strict, extended and representation languages

) ALGOL 68 is a language in which "programs" can be formulated for
computers", i.e. "gutomata” or "humen beings". It is defined in three
tages, the "strict language", "exten&ed‘ language" and "representation
anguage". ‘

) For the definition partly the "English language", and partly a "formal
anguage" is used. In both languages, and also in the strict language and
he extended language, typographical marks are used which bear no relation |

o those used in the representation lenguage.
.1.2. The syntax of the strict language

,) The strict languege is defined by means of a syntax and semantics.
his syntax is a set of "production rules" for "notions", i.e. nonempty
sequences of "small letters" ("abcdefghi,jkhmbpqrstuvmwz"), possibly
interspersed with nonsignificant blanks and/or hyphens. (-
{Note that those small letters are in e different type font than

this sentence. }

b) A "list of notions" either is empty, or is a notionm, or consists of
g list of notions followed either by a "oeomma" (",") or by a comma followed

by a notion.

¢) A production rule for & notion comsists of that notion, possibly
preceded by an "asterisk" ("#"), followed by a "colon" (":") and followed
by a list of notioms, & "direct production" of that notion, and followed
by a "point" (n.n).

d) A "symbol" is a notion ending with tsymbol’.

e) A "production" of a given notion is either a direct production of that
given notion or a list of notions obtained by replacing a second notion
in a production of the given notion by a direct production of that second

notion.

£) A "terminal production" of a notion is a production of that notion

consisting of symbols and commas only.

1.1.2. continued

{In the production rule
1yariable-point numeral : integral part option,
(5.1.2.1.‘b) of the strict language,

' al option, fractional part! .
itnzef.ireciai:'odition of the notion tyariable-point numeral'. A terminal .
production of this same notion is

13igit zero symbol, point symbol, digit one symbol' . o

The notion 1digit zero synbol' is an example of & symbol. 'The line

1twas brillig and the slithy toves' is not & relevant notion of the

in that it does not end with tsymbol' and no production

fractional part. '

strict language,
rule for it is given (1.1.5 Step 3, L), }

1.1.3. The syntax of the metalanguage

s of the strict language are partly enumerated and

the aid of & "metalanguage"

"retanotions”, i.e.

a) The production rule :
whose syntax consists of

partly generated with
a set of production rules for

"eapital letters" ("ABCDEFGHIJK[MI‘]OPQRSTUVWXYZ") .

(NOTE THAT THOSE CAPITAL LETTERS ARE IN A DIFFERENT TYPE FONT THAN

THIS SENTENCE. }

ponempty sequences of

" oither is empty or is a notion, or consists

1) A "list of metanotions ‘ not
and possibly preceded and/or

of one or more metanotions separated,
followed, by notions and/or blanks.

tanotion consists of that metanotion

¢) A production rule for a me
followed by a colon and follo
production of that metanotion, and fo

wed by a list of metanotions, & direct
11owed by a point.

d) A production of & given metanotion is either & direct production of

jon or a list of metanotions obtained by replacing &

that given metanot :
metanotion by & direct

second metanotion in & production of the given

production of that second metanotion.

ion is a production of that

e) A terminal production of a metanot
mall {etters

metanotion vhich is a mabiss—, possibly empby, sepuente of s



1.1.3. continued

{In the production rule
'"PAG : LETTER.',
derived from 1.2.1.1, 'LETTER' is a direct production of the metanotion
'PAG!. A particular terminal product:l.on of the metanotion 'TAG' is the
notion 'letter x' (see 1.2.1.m, n). 'Ebe-productlon rule
VEMPTY : (1.2.1.1),

tha mlhnvﬁwn CEMPYY
Lhas an empty direct productlon. }

1.1.4. The production rules of the metalanguage

The production rules of the metalanguage are the rules obtained from
the rules in Section 1.2 in the following steps:

Step 1: If some rule contains one or more "semicolons” ("3"), then it is

replaced by two new rules, the first of which consists of the part of
that rule up to and including the first semicolon with that semicolon
replaced by a point, and the second of which consists of a copy of
that part of the rule up to and including the colon, followed by the
part of the original rule following its first semicolon, whereupong)
Step 1 is taken again ;

Step 2: A number of production rules for the metanotion 'ALPHA' {1.2.1.n}
each of whose direct productions is another small letter, may be added.

{For instance, the rule
'TAG : LETTER ; TAG LETTER ; TAG DIGIT.',
from 1.2.1.1 is replaced by the rules
'TAG : LETTER.' and 'TAG : TAG LETTER ; TAG DIGIT.'
and the second of thése is replaced by
"PAG : TAG LETTER.' and 'TAG : TAG DIGIT.'

thus resulting in three rules from the original one.

The reader mey find it helpful to read ":" as "may be a", "," as

"followed by a" and ";" as "or a". }
1.1.5. The production rules of the strict language

The production rules of the strict language are the rules obtained in
the following steps from the rules given in Chapters 2 up to 8 inclusive
under Syntax:

Step 1: Identical with Step 1 of 1.1.h

1.1.5. continued

Step 2t If a given rule now containg one or more seguences of capital
jetters, then this (these) sequence(s) is (are) interpreted as (a)
sequence(s) of the metanotions of Section 1.2 {The metanotions of
1.2 have been chosen such that this interpretation is unique.}, and
then for each terminal production of such a metanotion, & new rule

is obtained by replacing that metanotion, throughout a copy of the
given rule, by that terminal production, whereupon the given rule is
discarded and Step 5 is taken; otherwise, the given rule 1shdyroduct10n

oEhev Oﬂvqh
rule of the strict language. wod @ twdtea

Step 3: A number of production rules for the notions'other Lindica.tion L
{4.2.1.b, e, £} each of whose direct productions is a.\”su &Kil“ﬁ;e:'fn:
from any other symbol may be added. ]

Step 4: A number of production rules may be added for the notions
tother comment item' {3.0.9. c} and 'other string item' {5.3. 1.b} each
of whose direct productions is a symbol different from any character-
token with the restrictions that no other-camment-item is the comment -

symbol and no other-string-item is the quote-symbol.

{The rule
'actual LOWPER bound : strict LOWPER bound.'
derived from T.1.1.r by Step 1 is used in Step 2 to provide two
production rules of the strict language, viz.
tactual lower bound : strict lower bound.' and
'actual upper bourd : strict upper bound.'s
Note that
tgctual lower bound : strict upper bourd . '
is not a production rule of the strict language, since the replacement
of the metanotion 'LOWPER' by one of its productions must be consistent
throughout. Since some metanotions have an infinite number of terminal
productions, the number of notions of the strict language is infinite
and the number of production rules for a given notion may be infinite;
moreover, 31nce some metanotions have terminal productions of infinite
length, some notions are infinitely long. For examples see h.1.1.
Some production rules obtained from a rule containing a metanotion may
be blind alleys in the sense that no production rule is given for some

notion to the right of the colon even though it is not a symbol. }



.1.6. The semantics of the strict language

L) A terminal production of a notion is considered as a linearly ordered
equence of symbols. This order is called the "textual order", and
'following" ("preceding") stands for "textually immediately following"
"textually immediately preceding”) in the rest of this Report.
ypographical display features, such as blank space, change to a new'line,

nd change to a new page do not influence this order.

) A sequence of symbols consisting of a second sequence of symbols
receded and/or followed by (a) sequence(s) of symbols "contains” that

econd sequence of symbols.

) Unless otherwige specified {d}, a "paranotion" at an occurrence not
nder "Syntax", not between apostrophes and not within another paranotion
tands for any terminal production of some notion; a paranotion being
. ond
) & notion ending with 'symbol', im-whiek-caee it then stands for
itself {e.g. "begin-symbol"}, or

i) a noﬁigf whose production rule(s) do(es) not begin with an asterisk,

ither

. v . . . .
an—vhiek—ease it then stands for any terminal production of itself

{e.g., "rumber-token" (3.0.3.b) stands for 'digit zero symbol', ‘digit‘

one symbol', 'digit two symbol', 'digit three symbol!, 'digit four

symbol', 'digit five symbol', 'digit six symbol', 'digit seven symbol!,

'digit eight symbol', 'digit nine symbol',
ten to the power symbol'}, or

ii) a noEmuf whose production rule(s) do(es) begin with an asterisk, ¢m
wiriclea®e it then stands for any terminal production of any of its
direct productions {e.g. "trimscript" (8.4.1.1) stands for any termin
production of 'trimmer option' or 'subscript'.}, or

v) a paranotion followed by "s", or a paranotlgn ending with "y" in
which "y" has been replaced by "ies", in-whioh-eese it then stands
for some number of the terminal productions stood for by that paranoti

'point symbol'! or 'times

{e.g. "trinscripté" stands for some number of terminal productions of
'trimmer option' and/or 'subscript', and "primaries" stands for some
number of terminal productions stood for by 'primary'.}, or

) a paranotion whose first small letter has been replaced by the corres-
ponding capital letter, in_nhéégzeeee it then stands for the terminal

productions stood for by that paranotion before the replacement

vi) & paranotion in vhich a "mode

1.1.6. continued 1

"Identifiers" stands for what 'identifiers' stands for}, or
" i.e. a terminal production of 'MODE',

{e. e

has been omitted, 1n_uh;oh—ease-1t then stands for any terminal
production stood for by any paranotion from which the given paranotion
could be obtained by omitting a terminal productlon of 'MODE' {e.g.y
nglice" stands for any terminal production of N MVODE slice‘0 (8.4.1.a),

vhere "MODE" stands for any terminal production of the metanotion
'MODE'. }.
{As an aid to the feader, paranotions, when not under Syntax or between

apostrophes, are printed with hyphens instead of spaces. As an additional

aid, a number of superfluous rules beginning with an asterisk have been

included. }

d) when a paranotion is said to be a "constituent" of a second paranotionm,
then the first paranotion stands for any terminal production stood for by
it according to 1.1.6.c which is contained in a terminal production stood
for by the second paranotion but not contained in a terminal production

stood for by either of these paranotions contained in that second terminal

production.

{e.g. § := 1 i8 a constituent assignation (8.8) of the assignation
i :=J := 1, but not of the serial-statement (6.1.1.D)
{i=g =13k :=2.1}

e) In sections 2 up to 8 under "Semantics", a meaning is associated with
certain sequences of symbols by means of sentences in the English language,
as a series of processes (the "elaboration" of those sequences of symbols
as terminal productions of given notions), each causing a specific effect.
Any of these processes may be replaced by any process which causes the

same effect.

f) The "preeleborastion” of a sequence of symbols as a terminal production
of a given notion consists of its elaﬁoratiqg as terminal production of th
notion which is a direct production of the given notion and of which it is
a terminal production; except as otherwise specified, the elaboration of a
sequence of symbols as terminal production of a given notion is its
preelsboration as terminal production of that notion.

{e.g. the elaboration of random as a fitted-real-cohesion is its
elaboration as a called-real-cohesion (8.2.0.1.e).



1.2. The metaproduction rules

1.1.6. continued 2

1.2. 1. Metaproduction rules of modes
g) If something is le‘f“t'é undeiined or is said to be undefined, then this

LTmIng

ﬂe%t:s that it is not @efimed by this Report alone, and that, for its
.

eminalion

definitien, information from outside this Report has to be taken into

a) MODE : NONUNTTED ; UNLTED.

b) NONUNITED : TYPE ; PREFIX MODE.

¢) TYPE : PLAIN ; structured with FIELDS ; PROCEDURE ; fomt.

4) PLAIN : INTREAL ; boolean ; character.

e) INTREAL : INTEGRAL ; REAL.

¢) INTEGRAL : LONGSETY integral.

g) REAL : LONGSETY regl.

h) LONGSETY : long LONGSETY ; EMPTY.

i) EMPTY : .

j) FIELDS : a FIELD ; FIELDS and a FIELD.

x) FIEID : MOLE named TAG.

1) TAG : LETTER ; TAG LETTER ; TAG DIGIT.

m) LEPTER : letter ALPHA.

n) ALPHA : a ;b 3;c;d;e; f;g3h313;
p;Q;ri3;s;;tsusviwsiXx;ys 2.

o) DIGIT : digit zero ; digit FIGURE.

p) FIGURE : one ; two ; three ; four ; five ; six ; seven ; eight ;
nine.

q) PROCEDURE : procedure PARAMETY DELIVETY.

r) PARAMETY : with PARAMETERS ; EMPTY.

s) PARANEI‘ERS:aPARANE'IER;PARANEIERSaxﬁaPARANE’I‘ER.

+) PARAMETER : MODE parameter.

u) DELIVETY : delivering a MODE ; EMPTY.

v) PREFIX : row of ; reference to.

w) UNITED : union of MODES mode.

x) MODES : MODE ; MODES and MODE.

account.

Y

1.1.7. The extended language

The extended language encompasses the strict language; i.e. a program
in the strict language, possibly subjected to a number of notational
changes by virtue of "extensions" given in Chapter 9 is a program in
the extended language and has the same meaning.

{e.g. real x, y, z means the same as (real x, real y, real z)
by 9.2.c and 9.2.d.}

1.1.8. The representation language

a) The representation language represents the extended language; i.e. 3%
a program in the extended language, in which all symbols are replaced

certain typographical marks by virtue of "representations", given in

J3ki;l;mzn;o;

Section 3.1.1, and in which all commas {commas, not comma-symbols} are

deleted, is a program in the representation language and has the same
meaning.

b) Each version of the language in which representations are used which" 3
are sufficiently close to the given representations to be recognized '
without further elucidation is also & representation language. A version ,
of the language in which notations or representations are used which are |
not obviously associated with those defined here but bear a one-to-one i
relationship with them, is a "publication language" or "hardware language ‘,
{i.e. & version of the language suited to the supposed preference of the
human or mechanical interpreter of the language}.
{e.g., begin, begin and 'BEGIN' are all representations of the

begin-symbol in the representation language.}

{The reader may find it helpful to note that a metanotion ending
in 'ETY' always has an empty production. }



Y
1.2.2. Metaproduction rules associated with mod )ses

a) PRIMITIVE : integral ; real ; boolean 5 character ; format.
b) ROWS : row of ; row of ROWS.

c) ROWSETY : ROWS ; EMPTY.

d) ROWWSETY : ROWSETY.

e) NONROW : TYPE ; reference to MODE ; UNITED.

f) REFEIY : reference to ; EMPTY.

g) NONREF : TYPE ; row of MODE ; UNITED.

h) NONPROC : PLAIN ; structured with FIELDS ; -

procedure with PARAMETERS DELIVETY 5 row of MODE ; UNITED ;

reference to NONPROC.

i) IMODE : MODE.

j) RMODE : MODE.

k) MODETY : MODE ; EMPTY.

1) IMODESETY : MODES and ; EMPTY.

m) RMODESETY : and MODES ; EMPTY.

n) LFIELDSA : FIEIDS and a ; a.

o) RFIELDSETY : and FIELDS ; EMPTY.

p) COMPLEX : structured with a real named letter r letter e
ard a real named letter i letter m.

q) STRING : row of character.

r) BITS : row of boolean.

8) MABEL : MODE ; label.

142.3. Metaproduction rules associated with phrases

a) PHRASE : declaration ; CLAUSE.

b) CLAUSE : statement ; MODE expression.

c) SOME : serial ; unitary ; CLOSED ; choice s THELSE.

d) THELSE : then ; else.

e) CLOSED : closed ; collateral ; conditional.

£) COERCETY : COER(‘JEPDE_‘,_ EMPTY.

g) COERCED : h FORCED.

h) FORCED : adapted ; adjusted ; arrayed 5 called ; depressed ;
expressed ; fitted ; peeled ; united ; widened.

i) FORCETY : FORCED ; EMPTY.

3) WIRETY \ hig; EwerY.

1.2.h. Metaproduction rules associated with formulas

a) COERCEND : MODETY FORM.

p) FORM : ADIC formala ; cohesion ; confrontation.

¢) ADIC : PRIORITY ; monadic.

d) PRIORITY : priority NUMBER.

e)NUMBER:one;'I'hO;TI—IREE;FOUR;FIVE;SIX;SEVEN;EIGIﬂ‘; .
NINE.

£) TWO : one plus one.

g) THREE : TWO plus one.

h) FOUR : THREE plus one.

i) FIVE : FOUR plus one.

j) SIX : FIVE plus one.

x) SEVEN : SIX plus one.

1) EIGHT : SEVEN plus one.

m) NINE : EIGHT plus one.
n) OPERATIVE : procedure with a RMODE parameter DELIVETY ;
procedure with a IMODE parameter and a RMODE parameter DELIVETY.

1.2.5. Other metaproduction rules

a) VIRACT : virtual ; actual.

b) VICTAL : VIRACT ; formal.

c¢) LOWPER : lower ; upper.

d) ALEPH : ALEPH letter f.

e) ANY : sign ; zero ; digit ; point ; exponent ; complex ; character ;
suppressible ANY ; replicatable ANY.

£) NOTION : ALPHA ; NOTION ALPHA.

g) SEPARATORETY : comma symbol ; g0 on symbol ; campleter ; sequencer ;
EMPTY. :

h) SELERATOR : selection ; selector ; declarator.

{Rule f implies that all notions (1.1.2.a) are productionms (1.1.3.4)
of the metanotion (1.1.3.a) 'NOTION'; for the use of this metanotion,
see 3.0.1.b, ¢, d, e, f. Rule d yields an infinite sequence; for the
use of this metanotion, see 5.5.1.6.a. }
{"Well 'slithy' means ']r.ithe' and 'slimy'. ...
You see it's like a portmanteau ~ there are
two meanings packed into one word."
Through the Looking Glass, Lewis Carroll.}



Fov serial-~ deelarabions seeb.i.l. ., For
\uhl—Se;-«{nu-aphuns see 3.0.1.b0 and
G0t ‘9,

1.3. Pragmatics {Merely corroborative detail, intended to 2. The computer and the program

give artistic verisimilitude to an otherwise 5.1. Syntex

) program : open, stardard declarations, library declarations option,
a

particular program, close.
b) standard declarations : serial declaration, go on symbol.
¢) library declarations : serial declaration, go on symbol. J
a) parti.slsﬂ;af; Er"?gargu' ]‘;a,l‘i'elI E)egjlence option, CLOSED statement.-
{;o:"‘starxiard-declarations see Chapter 10, Lfor collateral-statements
gee 6.3.1.b, for closed-statements see 6.4 and for conditional-statements
see 6.5. The specification of library-declarations is undefined. }

bald and unconvineing narrative.

Mikado, W.S: Gilbert.}

.

Scattered throughout this Report are "pragmatic" remsrks included between
the braces { and }. These do not form part of the definition of the
language but are intended to help the reader to understand the J.mpllca.tlonsf

of the definitions and to find corresponding sections.

{Some of these pragmatic remarks are examples wwibten in the
representation language. In these examples, ldentifiers occur out of

context from their defining occurrences. Unless otherwise specified, these 2.2. Terminology {"When I use a word," Humpty Dumpty said, in

bccurrences identify those in the identity-declarations of the standard- rather a scornful tone, "it means just what

leclarations in Chapter 10 (e.g. random from 10.3.k or pt from 10.3.a)

I choose it to mean - neither more nor less."
or those in:

Through the Looking Glass, Lewis Carroll}
Int i, g, k, my n ; real a, b, x, y ; bool Ps q, overflow ; char e

format f ; bits t ; string s ; compl w, z ;

ref real xx, yy ; [7:n] real x1, y1 ; [1:m, 7:n] real x2 ;
[7:n, T:n] real y2 ; [1:n] int 77 ;

broc x or y = ref real expr(random < .5 | x | y) ;

proc ncos = (int ©) real : cos(2 x pi x i/n) ;

proc nein = (int 1) real : sin(2 x pi x i/n) ;

proc g = (real u) real : (arctan(u) - a + u - 1) ;

broc stop = expr(il:1) ;

exit: princeton: grenoble: kootwijk: warsaw: zandvoort: amsterdam: z :=

. . 1
’ The meaning of & program is explained in terms of a hypothetical *eomputer
vhich performs a set of "actions" {2.2.5}, the elaboration of the

program {2.3.a}. The computer deals with a set of "objects” {2.2.1} betweer

which, at any given time, certain "relationships" {2.2.2} may "hold".

2.2,1. Objects

Each object is either "external" or "internal". External objects are

"occurrences" of terminal productions {1.1.2.f} of notions. Internal
“instances” o
objects are "values" {2.2.3} ,at-different—instemced’ .

2.2.2. Relationships

avr e
a) Relationships exe e1therL permanent”, i.e. independent of the program

and its elaboration, or actions may cause them to hold or cease to hold.
Each relationship is either between external objects or between an
external object and an internal object or between internal objects.

b) The relationships between external objects are:

#4o contain® {1.1.6.b}, "to be a constituent of¥ {1.1.6.d} and "to
identirfy".

c) A given occurrence of an "identifier" {4.1} ("indication" {4.2},
"operator" {4.3}) may identify a "defining" ("indication-defining",
"operator-defining") occurrence of the same identifier (indication,
operator).



2.2.2. continued 1 2.3, Values

d) The relationship between an external object and an internal object slues &re

) "plain
its elaboration, .

ngyructured" values {2.2.3. 2} or "multiple" values {2.2.3.3}, which

are composed of other values in a way defined by the program, .
" {5.2.3.4}, vhich are certain sequences of

is: "to possess". " values {2.2.3.1}, which are independent of the program and

e) An external object considered as a terminal production of a given
notion may possess a value, called "the" value of the external obJect
when it is clear which notion is intended.

"routines™ and "formats

symbols defined by the program, or
jv) names {2.2.3.5}, which are created by the elaboration of the program.
i

f) An identifier (operator) may possess a value ({more specifically} a
"routine" {2.2.3.4}). This relationship is caused to hold by the elaboratj
of an "identity-declaration" {7.4} ("operation-declaration" {7.5}) and !
ceasés to hold upon the end of the elaboration of the smallest serial-
clause {6.1.1.b} containing that declaration.

2,2.3.1. Plain values
a) A plain value is either an "orithmetic" value, i.e. an integer or

; haracter.
g) An external object other than an identifier or operator {e.g. an a real number, or is & truth value or ¢

expression (6.0.1.c)} considered as terminal production of a given notionj b) An arithmetic value has & "length number", i.e. a positive integer

may be caused to possess a value by its elaboration as terminal productio% £ discrimination with which the value is

characterising the degree o
kept in the computer. The number of integers (real numbers) of given

length number that can be distinguished increases with the length number
up to a certain length number, ealled the number of different lengths of

integers (real numbers) {10.1.a, c}, after which it is constant.

of that notion, and continues to possess that value until the next elabori
if any, of the same occurrence of that external object is "initiated",

whereupon it ceases to possess that value.

h) The relationships between internal objects {values} are: "to be of
the same mode as”, "to be equivalent to", "to be smaller than", "to be a ¢) For each pair of integers (real pnumbers) of the same length number,
omponent; of” and "to refer to'. the relationship to be smaller than is defined {10.2.2.a, 10.2.3.a}. For
i) A value may be of the same mode as another value; this relationship is 1 each pair of integers of the same length number, a third integer of that
length number may exist, the first integer "minus" the other one

{10.2.2.g}. Finally, for each pair of real numbers of the same length

number, three real numbers of that length number may exist, the

first real number minus ("times", d1v1ded by") ‘the other one {10.2.3.g, 1, m}
these real numbers are obtained "1n the sense of numerical analysis", i.e.
by performlng the operations known in mathematics by these terms on real
numbers me deviate slightly from the given ones {; this deviation

eft u 0
is Meﬂ in this Report}.

permanent. \

j) A value may be equivalent to another value {2.2.3.1.d, f} and a value
ney be smaller than another value {10.2.2.a, 10.2.3.a}. If one of these
relationships is defined at all for a given pair of values, then either

it does not hold, or it does hold and is permanent.

) A given value is a component of another value if it is a "field"
(2.2,3.2}, "element" {2.2.3.3.a} or "subvalue" {2.2.3.3.c} of that

>ther value or of one of its components. d) Each integer of given length number is equivalent to a real number

of that length number. Also, each integer {real number) of given length

number is equivalent to an integer (real number) whose length number

|} Any "name" {2.2.3.5}, except "nil" {2.2.3.5.a}, refers to one instance k.
f another value. This relationship {may be caused to hold by an ‘
'assignment" (6.8.2.c) of that value to that name and} continues to hold

mtil another instance of a value is caused to be referred to by that

is greater by one. These equivalences permit the "widening" {8.2.5} of
an integer into a real number and the increase of the length number of

] i i i tions are onl
ame. The words "refers to an instance of" are often shortened in the an integral or real number. The inverse transformati y

sequel to "refers to".



2.2.3.1. continued .
2.2.3.3. continued
possible on those real numbers which are equivalent to an integer of ) A subvalue of a given multiple value is a multiple value referred to
c

py the value of a slice {8.4} the value of whose constituent whole
(8,4.1.8, c} refers to the given multiple value.
pte l o

the same length number or on those values which are equivalent to
a value of smaller length number.
e) A truth value is either "true" or "false".

i d formats
5,2.3.4. Routines an
f) Each character has an "integral equivalent" {10.1.h}, i.e. &

A routine (formet) is a sequence of symbols vhich is the same as some

nonnegative integer of length number one; this relationship is defined Josed-clause (6.4.1.a) (Format~denotation {5.5}).

only in so far that different characters have different integral equivaler
' 2.2.3.5. Nemes

a) There is one name, esdlod-nil, whose "scope" {2.2.4.2} is the program
end which does not refer to any value. Any other name is created by th?
elaboration of an actual-declarer {7.1.2.c. Step #, and refers to precisely

2.2.3.2. Structured values {Yea, from the table of my memory
I'1l wipe away all trivial fond record
Hamlet, William Shakespes

A structured value is composed of a number of other values, its fields,

one instance of a valuel.
in a given order, each of which.is "selected" {8.6.2. Step 2} by a

f
specific fleld-selector {7.1.1 é} b) If & given name refers to a structured value {2.2.3.2}, then to each o

its fields there refers a name uniquely determined by the given name end
2.2.3.3. Multiple values

the field-selector selecting that field, and whose scope is that of the

a) A multiple value is composed of a "descriptor” end a number of other given name.

values, its elements, each of which is selected {8.4.2. Step T} by a

¢) If a given name refers to a given multiple value {2.2.3.3}, then to
specific integer, its "index".

each element (each multiple value whose elements are a proper subset of the

4 : ’ o f ele b V'] b e Ve.l e tl’le! e reler a All’ame unlq uel de bemne(
z nts Of the iven mul lpl {b f S y
l ne g

i
the i~-th "lower bound", u; the i-th "upper bound", d; the i-th "stride",

) . i ‘ : :
"quintuples” (1., u;, d;, s;, t;) of integers, i = 1, «v., n; 1, is-wedked Wl by the given name and the index of that element (and that subset), an

whose scope is that of the given name.

i’

then the number of elements in the multiple value is zero; otherwise, it ig
u, =1, + 1) x o0 x (u -1 +1),
( 1 .1 ) ( n n .Zuck ‘!mg\thr which

The descriptor "describes" en-selementi%g [there exists an n-tuple

(r1, vees rn) of integers satisfying l,sr;<u foralli=1, .i,n

such that the element is selected by

i " " . " "
8, the i-th "lower state" and ti the i-th "upper state". If any li >u 2.2.4. Modes and scopes

2.2.4.1. Modes

a) Each instance {2.2.1} of & value is of one specific mode {1.1.6.c.vi}
which is & terminal production of 'NONUNITED' {1.2.1.b}; furthermore,
all instances of a given value other than nil {2.2.3.5.a} are of one same

c+(r1-11')Xd1+...+(rn-ln)><d. mode.

n . -

{Infa given ihstance of a multipgle value, £ state which is O(1) igdicate
that the given ue can [(cannot) fbe "superspded" (8,/8.2.a) an inktance
of a tiple ue in which the pound corr¢spondingf to the [state differs

from fthat in tie given ue. }

. ]
b) The mode of a truth value (character, format) is 'boolean' ('character!,
'format').

¢) The mode of an integer (a reel number) of length number n is (n - 1)

times 'long' followed by 'integral' (by 'real').
To bhe name 1—ehvn‘n} te “§iven maltiple vafue @ stabe of which
s 1' no waltiple value can be nssijmd (8 §d.c S(:(F‘F) in which

L'k{ brund ”'"sP“‘d""j to that sCate J{H‘ns Fwn\ that in 6‘\'(

qiven vq|u4_}



2.2.4.1. continued

d) The mode of a structured value iz 'structured with' followed by oné
or more "portrayals" separated by 'and', one corresponding to each fiéld
taken in the same order, each portraysl being 'a' followed by a mode
followed by 'named' followed by the terminal production of 'TAG' {1.2¢1.;‘
whose terminal production {field-selector} selects {2.2.3.2} that field.

e) The mode of a multiple value is a terminal production of 'NONROW'
{1.2.2.¢e} preceded by as many times 'row of' as there are quintuples in
the descriptor of that value.

f) The mode of a routine is a terminal production of 'PROCEDURE' {1.2.1.q

g) The mode of a name is 'reference to' followed by another mode. {See
Tel.2.c. Step 8. 1}

h) A given mode is "adjusted (united) from" a second mode if the notion

consisting of that second mode followed by 'cohesion' is a production of

the notion consisting of 'adjusted' ('united') followed by the given mode .

followed by 'cohesion' {see 8.2}.

{e.g. The mode specified by real is adjusted from the mode specified

by ref real, and that specified by union(int, real) is united from those
d mode-if Bpth

specified by int and real. } *

i)ga e js "relap€d to'Va se modes are adju ed/;rﬁﬁ
-

ona/§2::’£226/§ségﬁ§.u(éf;. a hb.3le } « ///e/ //)af

{e.g. The modes specified by real, ref real, union(int, real) and

proc real sre all related to one another since all are adjusted from 'real
Awn [3

wose specibied Yy greclIveal and € Jeefvealavealserelatad €o one anothery
J) A given mode is "structured from" a second mode if it begins with

'structured with' and the mode between 'a' and 'named' in one of its

portrayals {d} is or is structured from that second mode.

{e.g. In the context of the declarations

struct a = (aa, bb) and
struct b = (aa, ref real ») ,

the mode specified by g is structured from those specified by g and b,
whereas the mode specified by b is structured from that specified by a,
and hence also from itself.}

Two modes are related” Ev one anobhey f Huy are Lhe same
of Chem 5 “JJ“S“’A From a mede yelated o the other
one, ov i€ buth bcgin wibh ‘raw UF' and Ehe wmodes ebbuined

by de‘eh‘,’ Ehe invtral ‘row of’ Fem <ach of H\O‘“, are

or i€ one

/

p.2.4.2. Scopes, inner and outer scopes

) Eaéh value has one specific scope. Each instance of a value has,
a

ifi i " "outer scope".
moreover, one specific "inner scope" and "o D

p) The scope of a plain value is the program,

i f
th t Of a Struct\lred (mulbiple) va.lue 1s the Sma-llest Of the Scopes o]
a

its fields (elements),

at of a routine or format possessed by a given denot
;s the smallest range {L.1.1.e} containing a defining
1 . 3
(indication—defining {4.2.2.a}, operator-defining {k.

. . i ned
f any, applied but not define
entifier (indication, operator), i
o et r-applied but not

ation {5.4, 5.5}
{4.1.2.a}
3.2.a}) occurrence

th

(indication-applied but not indication-defined, operato
operator-defined) within that denotation, and, otherwise, the program,

and
that of & name is some {8.5.2.c} range.

an (nstance of -
¢) The inner (outer) scope ofLa value possessed by an external objec

on Ihstﬂ'\t! e

d) The inner (outer) scope oflg value possessed by an external object

whose value can have one of a number of inner (outer) scopes, is thi

e ——

smallest (largest) of those inner (outer) scopes.

2.2.5. Actions {Suit the action to the word.
.2.5. Actio

the word to the action.

Hamlet, William Shakespeare

An action is eithe "elementary", "serial" or "eollateral”.

A serial action consists of actions which take place one after the

other. A collateral action consists of actions merged in time; i.e.

it consists of the elementary actions which make up those actions

provided only that each elementary action of each of those actions which

would take place before another elementary action of the -same action

. . n
when not merged with the other actions, also takes place before it whe

merged. e

i i i except as
{What actions, if any, are elementary 1sandef1ned, 3]

provided in 6.4.2.c. }



haven't been invented jﬁﬂtwwﬂ e
Through the Looking Glass, Lewis Blrro11.}
) The elaboration of a program is the elaboration of the closed—
tatement {6.4.1.a} consisting of the same sequence of symbols.
In this Report, the Syntax says which sequences of symbols are programs,
nd fhe Semantics which actions are performed by the computer when
laborating a program. Both Syntax and Semantics are recursive. }

) In ALGOL 68, a specific notation for external objects is used which,
>gether with its recursive definition, makes it possible to handle and
) distinguish between arbitrarily loﬁg Seéquences of symbols, to distinguish
tween arbitrarily many different values of a given mode (except 'boolean')
d to distinguish between arbitrarily many modes, which allows arbitrarily
ny objects to occur in the computer and which allows the elaboration

' a program to involve an arbitrarily large, not necessarily finite,

mber of actions.

is is not meant to imply that the notation of the objects in the

mputer is that used in ALGOL 68 nor that it has the same possibilities.
is, on the contrary, not assumed that the computer can handle

bitrary amounts of presented informatjon. It is not assumed that these

> notations are the same or even that a one
Ists between them;

-to-one correspondence
in fact, the set of different notations of objects

& given category may be finite. It is not assumed thet—thre—nunber—of

ar4ﬂmrTEqﬁEFEﬁEnts—ur‘u-given—pregnam_nor that the speed of the

puter is sufficient to elaborate & given program within a prescribed

S€ Of timeg nov bhat bhe nambe, of cinju('s awnd ’N'Q“'Rsh‘rs that can b
ablished is 3ufficiant Cv  laberate ¢k ot atl.

A model of the hypothetical computer, using a physical machine, ig
d to be an "implementation" of ALGOL 68, if it does not restrict the
of the language in other respeétS'than those mentioned sbove.
thermore, if g language is defined whose particular-programs are
'particular—prograns of ALGOL 68 and have the same meaning, then

. language is called a "sublanguage" of ALGOL 68. A model is said

¢ an implementation of a sublanguage if it does not restrict the

of the sublanguage in other respects than those mentioned asbove.

{A sequence of symbols which is not a program but can be turned
one by a certain number of deletions or insertions of symbols and
a smaller number could be regarded as a program with that number o
syntactical errors. Any program that can be obtained by performing
number of -deletions or insertions may be called & "possibly intend.

gram. ther a program or one of the possibl: intended Zram
I;I:f)s Eha Q%ﬁ}fefl‘s .cgl-kogrl:’ vn Fact (:\Hndgd b (*-P?\..,_g Y pro

is a matter wh:
outside of this Report. }

{In an implementation, the particular-program may be "compiled",
translated into an "object program", smittem in the code of the phy
machine. Under circumstances, it may be advantageous to compile pax
the particular-program independently, e.g. parts which are common t
several particular-programs.

If such a part contains occurrences of identifiers (1ndications, op
whose defining (indication—defining, operator-defining) occurrences
(Chapter 4) are not contained in that part, then compilation into a
efficient object program may be assured by preceding the part by a
of formal-parameters (5.k.1.e) (mode-declarations (7.2) or priority
declarations (7.3), captions {(7.5.1.1)) containing those defining
(indication-defining, operator-defining) occurrences.}



3.0. Syntax
3.0.1. Introduction

a)# basic token : letter token ; denotation token ; action token ;
declaration token ; syntactic token ; sequencing token ;
hip token ; extra token % s{sfngo’]a‘,m f;'iT‘?.’lE s.%&?rlornah'
b) NOTION option : NOTION ; EMPTY. N ccn(‘\on(
¢) chain of NOTIONs separated by SEPARATORETYs : NOTION ; T
NOTION, SEPARATORETY, chain of NOTIONs separated by SEPARA'IOREI‘YS.
a) NOTION list : chain of NOTIONs separated by comma symbols.
e) NOTION sequence : chain of NOTIONs separated by EMPTYs.

£) NOTION pack : open symbol, NOTION, close symbol.

{Examples:
a)a;0;+;_§_@;2f;-;_@_;m;";g;gri»iﬁ"*}?;
b) 0
c)0, 1, 2 3
a)0;0,17, 2;

e) 0 3 000 ;
£) (1, 2, 3) }

{For letter-tokens see 3.0.2, for denotatlon-tokens see 3.0.3 , for

action-tokens see 3.0.4, for declaration-tokens see 3.0.5, for syntactic-

tokens see 3.0.6, for sequencing-tokens see 3.0.7, for hip-tokens see

3.0, 8 amé for extra-tokens see 3.0.9s.Fond For obher_mode-indications and
OH\Q'r-. spevabor—indicabiony gae AT St"p3‘}

3.0.2. Letter tokens

a) letter token : LETTER.

b) LETTER : LETTER symbol.

{Examples: Skepd
a) a j 7 (see 1.1.&.[\!) }
{Letter-tokens are constituents of identifiers (4.1.1.a), field-

selectors (7.1.1.i), format-denctations (5.#5) and row-of-character-
denotations (5.3). }

a) denotation token : number token ; true symbol ; false symbol ;
formatter symbol ; expression symbol ; parameter symbol ;
camma symbol ; space symbol.

b) nunber token : diglt token ; point symbol ;
times ten to the power symbol.

¢) digit token : DIGIT.

da) DIGIT : DIGIT symbol.

e) flipflop : flip symbol ; flop symbol.

{Examples:
a) 7 ; true 3 false 3 f 3 expr 3 ¢ 3 1
b)Y 75 .5 105
e) 73
e)1;01}

o . .
-3 3-8 9

1, whereas others, e.g. the expression-symbol, serve only to comnstruct
denotations. }

3.0.4. Action tokens

a) action token :
_operator token ; equals symbol ;
b) operator token : or symbol ;
differs from symbol ; is less than symbol ; is at most symbol ;
is at least symbol ; is greater than symbol ; plusminus ;
times synbol ; over symbol ; quotient symbol ; modulo symbol ;
absolute value of symbol ; lengthen symbol ; shorten symbol ;
rourd symbol ; sign symbol ; entier symbol ; odd symbol ;
‘representation symbol ; real part of symbol ;
imaginary part of symbol ; conjugate symbol ; binal symbol ;
to the power symbol ; minus and becomes symbol ; plus* and becames
times and becomes symbol ; over and becomes symbol ; '
modulo and becomes symbol ; prus and becomes symbol ;
down symbol.
¢) plusminus : plus symbol ; minus symbol.
d) confrontation token : becomes symbol ; conforms to symbol ;
conforms to and becomes .symbol 3 1s symbol ; 1s not symbol.

value of symbol ;
and symbol j; not symbol ;

up symbol ;

flipflop ;

{Denotation-tokens are constituents of denotations (Chapter 5). Some
denotation-tokens may, by theniselves, be denotations, e.g. the digit-token

confrontation token.

synbol



3.0.4. continued

{Examples:

a) + ;=3 val; i=3

D) V3 A3 <3323 >3+ xg [yt v abs; leng
short ; round ; sign ; entier 3 odd ; repr ; re ; im ; conj ; bin ;
A 3 minus ; plug ; times ; over ; modb ; prus ; up ; down ;

e) +; -3

a) =3 113 1= 3 =13 :F:}

{Operator-tokens are constituents of formulas (8.1). An operator-
token may be caused to possess an operation by the elaboration of an
operation-declaration (7.5).

Confrontation-tokens are constituents of confrontations (8.0.1.%). }

3.0.5. Declaration tokens

a) declaration token : PRIMITIVE symbol ; long symbol ;
reference to symbol ; procedure symbol ; structure symbol ;
union of symbol ; local symbol ; complex symbol ; bits symbol ;
string symbél 3 mode symbol ; priority symbol ; operation symbol.

3.0.Te Sequeﬁc;;;zg tokens

a) sequencing token : go on symbol ; campletion symbol ; go to symbol.
{Examples:

a) 5 3+ 3 goto}

{Sequencing-tokens are constituents of phrases, in which they
specify the order of elaboration (6.1.2.c). }

3.0.8. Hip tokens
a) hip token : skip symbol ; nil symbol.
{Examples: .
a) skip ; nil }
{Hip~-tokens function as skips (6.2.1.e) and nihils (8.3.1.e). }

3.0.9. Extra tokens and comments

a) extra token : for symbol ; fram symbol ; by symbol ; to symbol ;
while symbol ; do symbol ; then if symbol ; else 1f symbol ;
case symbol ; in symbol ; esac symbol ; plus 1 times symbol.

b) comment : comment symbol, comment item sequence option, comment symbol.
c) cament item : character token ; guete—symber—3-other comment item.
d) character token : letter token ; mumber token ; plus 1 times symbol ;

open symbol ; close symbol ; space symbol ; commg symbol.

{Examples:
a) int ; long ; ref ; proc ; struct ; union ; loc ;

compl ; bits ; string ;3 mode ; priority ; op }

{Declaration-tokens are constituents of declarers (7.1), which
specify modes (2.2.4), or of declarations (7.2, 3, 4, 5). } {Examples:
a) for 5 from ; by ; to ; while ; do ; thef ; elsf ; case ; in 5 esac ;.1 3
b) ¢ with respect to ¢ ; —
c)w; " ?;

dda; 7323 (3)3 5,1

3.0.6. Syntactic tokens symbof ) end Symbol

syubol"‘ngi " symhl
a) syntactic token : openl; closeﬁ—l;‘ntary symbol ; parallel symbol ;
sub symbol ; bus symbol ; up to symbol ; at symbol ; if symbol ;

THELSE symbol ; fi symbol ; of symbol ; label symbol. {For other-comment-items see 1.1.5. Step k. }

{Extra-tokens and comments may occur in constructions which, by virtue
of the extensions of Chapter 9, stand for constructions in which no

extra-tokens or conments occur. Thus, a program containing an extra-taken

a) (3 ;[.e'f’emsaq_g;[;];-‘;-';if;then;,ﬁi;g_f_‘;:t}

TR —rend—zero}

or a camnent is necessarily a program in the extended languasge, but the.

net Cov\v(vsvk‘! }

{Syntactic-tokens separate external objects or group them together. }




3.1. Symbols 3.1.1. continued 1

3.1.1. Representations symbol representation
true symbol true
a) Letter tokens ‘ false symbol false
' formatter symbol I
symbol representation symbol representation expression symbol expr
parameter symbol : expr
letter a symbol a letter n symbol n flip symbol 1
letter b symbol b letter o symbol 0 flop symbol g2
letter ¢ synbol e letter p symbol P comma symbol ' s
letter d symbol d letter q symbol q space symbol =
letter e symbol e letter r symbol r ¢) Action tokens
letter f synbol r letter s symbol 8 3
letter g symbol g letter t symbol t symbol representation
letter h symbol h letter u symbol u or symbol v or
letter 1 symbol Z letter v symbol ) and symbol A and
letter j symbol J letter w symbol w not symbol -~ not
letter k symbol k letter x symbol z equals symbol = &g
letter 1 symbol 1. letter y symbol Y differs from symbol £, ne
letter m symbol m letter z symbol 2 is less than symbol I
is at most symbol s le
b) Denotation tokens is at least symbol 2 e
is greater than symbol > gt
symbol representation . Pplus symbol +
minus symbol -
digit zero symbol - 0 times symbol x *
digit one symbol 7 over symbol /
diglt two symbol 2 quotient symbol % quotient
digit three symbol 3 modulo symbol % mod
digit four symbol 4 absolute value of symbol abe
digit five symbol 5 lengthen symbol leng
digit six symbol 6 shorten symbol .~ 8hort
digit seven symbol 7 v e round symbol round
digit eight symbol 8 sign symbol sign
digit nine symbol 9 entier symbol entier
point symbol . odd symbol odd

times ten to the power symbol 10 e



3.1.1. continued 2
symbol

representation symbol
real part of symbol
imaginary part of symbol

conjugate symbol
binal symbol

to the power symbol
minus and becomes symbol
plus and becomes symboi
times and becomes symbol
over and becames symbol
modulo and becomes symbol
prus and becames synbol
up symbol

down symbol

value of symbol

becames symbol

conforms to symbol
conforms to and becames symbol
is symbol

is not symbol

d) Declaration tokens
symbol

integral symbol
real symbol
boolean symbol
character symbol
format symbol
long symbol
reference to symbol
procedure symbol
structure symbol
union of symbol
local symbol

representation

A power -

: ot
s3= etb
1=3 18

@ i8 not ignot

representation

int
real

bool
char

‘ormat

3.1.1. continued 3
symbol

complex symbol
bits symbol
string symbol
mode symbol
priority symbol
operation symbol

e) Syntactic tokens
symbol

open symbol
begin symbol
close symbol
erd symbol
elementary symbol
parallel symbol
sub symbol

bus symbol

up to symbol

at symbol

if symbol

then symbol
else symbol

1 symbol

of symbol

label symbol

f) Sequencing tokens
symbol

go on synbol
completion symbol
go to symbol

representation

representation

(
begin

: at
( if
{ then
I else
) P
of
representation
s
. exit
go to goto




3.1.1. continued 4

g) Hip tokens

symbol representation
skip symbol skip
nil symbol nil

h) Extra tokens

symbol representation
for symbol : Jfor
fram symbol rom
by symbol by
to symbol ’ to
while symbol ;;n'le
do symbol :Z.o———
then if symbol T thef
else if symbol K elsf
case symbol ( case
in symbol | in
esac symbol ) ;ac
plus 1 times symbol ] 1

i) Special tokens

symbol representation

quote symbol "
coment symbol

o
8
|
]
X
<+

3.1.2. Remarks

a)Where more than one representation of a symbol is given, any one
of them may be chosen.

{However, discretion should be exercised, since the text
(@ >b thend | a fi,
though acceptable to an automaton, would be more intelligible to
a human in either of the two representations
(a>b | b} a

or

Zf a > b then b else a fi . }

3.1.2. continued

b) A representation which is a sequence of underlined or bold-faced

merks or a sequence of marks between apostrophes is different from the

sequence of those marks when not underlined, in bold face or between

apostrophes.

c) Repres ntations of qther letter-tokens {1.1.k. Step 2}, other- mode-
awn

gbhev~opevalor-in wations

}, other-comment-items and other-string-items

mdicationsL{ 1.1.5. Step 3

{1.1.5. Step 4} may be added, provided that no tuo. letter-tokeng {3.0.2},
¢ 7 ae~bwe indicationd {4, 2} ,—ne—twoComment=ttems—{3.0.9.c} and no-twe-

it N

W—tﬂrmw.

d) The fact that the representations of the letter-tokens given above

|

corresponding capital letter occur,
of an other letter-token {1.1.L. Step 2}.

given representations appear to be "ecomposite";

hes the same vepresentation as any ofher basic-boken

are usually spoken of as small letters is not meant to imply that the
[

so-called corresponding cpgital letters could not serve equally well

as representations. On the other hand, if both a small letter and the

then one of them is the representation

{For certain different symbols, one same representation is given,
e.g. for the parameter-symbol, up-to-symbol, at-symbol and label-symbol,
the representation ":" is given. It follows uniquely from the ';ynta.x
which of these four symbols is represented by an océ;.u'rence of ":"

outside comments and row-of-character-denotations. Also, some of the

e.g. the representation

".=" o the becames-symbol appears to consist of ":", which looks like
the representation ":" of the at-symbol, etc., and the representation
"_" of the equals-symbol. It follows from the Syntax that ".=" or even
".=" san occur outside comments and row-of-character-denotations as
representation of the becomes-symbol only (since "=" cannot occur as
representation of a monadic-operator). Similarly, the other given

camposite representations do not cause ambiguity. }

wd Ehat
E'S.g.l.a}/a d Eha

w0 commenb-ctem S?,O.‘l.(’.} (:S(‘n‘nj..‘;(um {5‘.3. \‘b}) has Che sam=e

,""!""Qsev\ﬁatioh s any obher comment—1Eem

oy bhe comment- symbo]

(“"Y obther S“”»y-i(‘em or the 1ﬂ°t¢-SYW\b03)-



4. Identification and context conditions
4.,1. Identifiers
4.1.1, Syntax

a)#* identifier : MABEL ldentifier.
b) MABEL identifier : TAG.

e¢) TAG LETTER : TAG, LETTER.

da) TAG DIGIT : TAG, DIGIT.

e)* range : COERCETY serial CLAUSE j PROCEDURE denotation.

{Examples:
b) x 3 xx ; x1 ; ansterdam }

{Rule b, together with 1.2.2._% and 1.2.1.1 gives rise to an infinity
of production rules of the strict language, one for each pair of terminal
productions of 'MABEL' and 'TAG'. For example,
treal identifier : letter a letter b.'

is one such production rule. From rule c¢ and 3.0.2.b, one obtains
'letter a letter b : letter a, letter b.',

letter a symbol.’' and

: letter b synbol.'

'letter a :
'letter b
yielding
'Jetter a symbol, letter b symbol'
as a terminal production of 'real identifier’.
See also T.1.1.g and 8.6 for additional insight into the function of
rules c and d. }

4.1.2. Identification of identifiers

a) A given occurrence of an identifier defines if

i) it follows a formal-declarer {5.k.l1.e,Fririveal,

ii) within some range, it is the textually first occurrence of that
identifier in a constituent flexible-lower-bound or flexible~upper-
bourd {7.1.1.u} of that range, or

iii) it is contained in a label {6.1.1.g};

otherwise, it "is'applied".

4.1.2. continued

p) If a given occﬁrrence of an identifier is applied, then it may

jdentify a defining occurrence found by the following steps:

Step 1: The given occurrence is called the "home" and Step 2 is taken ;

step 2: If there exists a smallest range containing the home, then this
range, with the exclusion of all ranges contained within it, is called
the home and Step 3 is taken {; otherwise, there is mo deflnlng occurrenc
which the given occurrence identifies} ;

Step 3: If the home contains a defining occurrence of the ldentifier,

then the given occurrence identifies it; otherwise, Step 2 is taken.

{In the closed-expression (bite x(107) ; abs x[2] = 0), the first
occurrence of x is a défining occurrence of a reference-to-row-of-
poolean-identifier. The second occurrence of x identifies the first and,
in order to satisfy the identification condition (4.4.1), is also a
reference-to-row-of-boolean-identifier. } »

{Identifiers have no inherent meaning. The defining occurrence of an
identifier either is in a label (6.1.1.g) or is made to possess a value
(2.2.3) by the elaboration of an identity-declaration (7.4). }

4.2, Indications
4,2.1. Syntax

a)# indication : MODE mode indication ; ADIC indijation.
) MODE mode indication : mode standard ; other Lindication.
¢) mode standard : string symbol ;
long symbol sequence option, complex symbol ;
long symbol sequence option, bits symbol.
d)* priority indication : PRIORITY indication.
e) PRIORITY indication : long synbol sequence option, operator token ;
long symbol sequence option, equals symbol ; otherii;ﬁxcation.
f) monadic cation :
operabor

other Lindication .
g)* adic indication : ADIC indication.

long symbol sequence option, operator token ;3



2.1. continued

{Examples:

bw compl ; primbive 5
 8tring ; long compl ; bits ;

+3=237; .7
5 P~ long abs |}
T :\n‘. :—_L ond nﬁir-npcrutorvinaiwho“s

{For other-Erxiications [see 1.1.5. Step 3 and for operator-tokens
e 3.0.4.b. }

2.2. Identification of indicetions

A given occurrence of an indication indication-defines if it precedes
e constituent equals-symbol in a mode-declaration {7.2} or priority-
claration {7.3}; otherwise it is "indication-applied".

If a given occurrence of an indication is indication-applied, then it
7 identify an indication-defining occurrence of the indication found
ing the steps of 4.1.2.b with Step 3 replaced by:

.ep 3: If the home contains an indication-defining occurrence of the
ndication, then the given occurrence identifies it;

othervise,
tep 2 is taken.".

{Indications have no inherent meaning. The indication-defining

urrence of an indication establishes that Indication as a terminal
duction of 'MODE mode indication' (7.2) or 'PRIORITY indication!
3). Monadic-indications have no indication-defining occurrence. }

. Operators
1. Syntax

operator : procedure with PARAMETERS ADIC operator.
procedure with PARAMETERS DELIVETY ADIC operator :
procedure with PARAMETERS ADIC operator.

procedure with a LMODE parameter and a RMODE parameter PRIORITY operator :
PRIORITY indication.

procedure with a RMODE parameter monadic operator : monadic indication.
priority operator : procedure with PARAMETERS PRIORITY operator.
Examples: »

3

be }

xtual posit
. and identifies the first occurrence, whereas, at the same te po

4.3.2. Identification of operators

v - 1 if i Gaxt
) A i en occurrence of an Operator opera.tor defines if it precedes the
a gl

constituent equals-symbol in an operation-declaration {T.5}; othervise,
it is "operator-applied". |
b) If a given occurrence of an operator is operator-applied, then 1t -
may identify an operator-defining occurrence of the operator found using
the steps of 4.1.2.b, with Step 3 replaced byf . .
"gtep 3: If the home contains an operator-defining oc?urrence o o
operator which is the same adic-indication as.ttfe given occurr : ;
end which {in view of the identification condition (4.4.1)} ?ou% e
an operator-defining occurrence of that operator, then the given o
occurrence identifies that operator-defining occurrence of the oper: H

otherwise, Step 2 is taken.".

. . .
{Operators have no inherent meaning. The operator-defining occurre?c |
£ an operator is made to possess a routine (2.2.3.4) by the elaboration
o
of an operation-declaration (7.5).

A given occurrence of an indication may be both ? Pﬁigqi?y;igq?cgtigg
and a priofity—operator. As a priority-indicatlon, it 1é?nt1f1e? 1t:.f
indication-defining occurrence. As a priority—operaton,llt may 1de:h: Y
an operatox;c}sﬁ.&in 1 fcbi\:{fﬁgceF i,ﬂzhis?ﬁ ~ﬁs“s‘_e‘s;s"c-iﬁs_asyic‘b,w;z}:::‘.x':e.msln.r;::;icaticm-
occurrence of an indication iffan operation-declaration is ension
application and an operator-definition {(but not an ?pera?or-app%lca ion ’it
it follows that the set of those occurrences which identify a given prior

operator is a subset of those occurrences vhich identify the same priority-
indication.
In the closed-statement
begin real x,y(1.5) ; priority min =6
op min = (real a, b) real : (a>b Vbl a);

x=ymnpt/ 2 end N
the first occurrence of min is an indication-defining occurrence of a .
i ilaiaction eridie
ence min is indication-app.
priority-SIX-indication. The second occurr ton

I

. 4 hence
. min is also operator-defined as a [prrr]j-priority-SIX-operator an

. . . of -
is also a [prrl-priority-SIX-operator (4.3.1.b; i.e. ignoring the mode



2. continued

e, if any, which it delivers), where [prr] stands for procedure-
-a-real-parameter-and-a-real-parameter, and [prrr] for [prr]-delivering-
al. The third occurrence of min is indication-applied and, as such,
tifies the first occurrence, whereas, at the same textual position, ,
is also operator-applied, and, as such, identifies the second occurrence
makes it (in view of the identification condition, 4.4.1) a [prrl-
rity-SIX-operator and hence, also because of the identification
ition, a [prrrl-priority-SIX-operator. This identification of the
rity-operator is made because

min ocecurs in an operation-declaration,

y could be an adjusted-real-priority-SIX-operand,
 pt/2 could be an adjusted-real-priority-SEVEN-operand

(since it is a priority-SEVEN-formula),

min is a [prrl-priority-SIX-operator, and

this combination of possibilities satisfies the identification

condition.

. this identification of the priority-operator accomplished, we know that

s an adjusted-real-priority-SIX-operand and that pZ/2 is an adjusted-
~priority-SEVEN-operand. If the identification condition were not
sfied, then the search for another defining occurrence would be

.inued in the same range, or failing that, in a surrounding range. }

{Though this be madness, yet

there is method in't.

Hamlet, William Shakespeare.} 4

, Context conditions

roper" program is any program satisfying the context conditions;
eaningful"” program is a proper program whose elaboration is defined
shis Report. Whether all progr’?'ms, only proper programs, or only
1ingful programs are "ALGOL~68 programs™ is a matter for individual
te. {If one chooses only proper 'pr'ogr'ams, then he must consider the

text conditions as syntax which is not written as production rules. }

4.4.1. The identification condition

In & proper program, each applied occurrence of an identifier (each ,
jndication-applied occurrence of an indication, each operator-applied
occurrence of an operator) which is a terminal production of one or

more notions ending with tidentifier' ('indication', operator') is a
terminal production of all those same notions at the defining (indication-
defining, operator-defining) occurrence, if any, of that identifier
(indication, operator). {See the remarks after 4.1.2 and L4.3.2. }

4. 4.2, The mode conditions

a) No proper program contains a declarer {7.1} specifying a mode united
from {2.2.4.1.h} two modes related {2.2.h.1.i} to one another, or from
o mode selabed-tothetumale, (rom which thaf mede s edjus ted.

{e.g. , neither the declarer wunion(real, ref real)
por the mode-declaration {7.2} mode a = wnion(real, proc a)

is contained in any proper program. }

b) No proper program contains a declarer specifying a mode structured
from {2.2.4.1.j} itself.
{e.g., no proper program contains the mode-declaration

struct a = (g%, real r). }

c) No proper program contains a declarer the const:ituent field-selectors
{7.1.1.h} of two of whose constituent field-declarators {7.1.1.g} are the
same sequence of symbols.

{e.g., the declarer struct(int i, bool i)
is not contained in any proper program, but
struct(int ¢, struct(int <, bool j) ) may be. }

4.4.3. The uniqueness conditions

a) A "reach" is a range {4.1.1.e} with the exclusion of all its constitue
ranges. A
b) A given mode-indication {L4.2.1.b} is "oonnected to" a second mode-
indication if the actual-declarer following the equals-symbol following t
indication-defining occurrence of the given indication ends with an
irdication which identifies the indication-defining occurrence of the se
Ilndicafion, or, otherwise is connected to the second indication.

{e.g., in the context of

mode a = ref b ; mode b = proc ¢ ,

the indication a is connected to b and hence to c. }



4.4.3. continued

¢) No proper program contains a reach containing two defining occurrences }

of a given identifier nor two indication-defining occurrences of a given
indication.
{e.g., none of the closed-expressions (6.4.1.a)

(real xz ; real x ; 8in(3.14)),

(real y ;s int y ; 8in(3.74)),

(real p ; p ¢ goto p ; sin(3.14)),

(mode a = real ; mode a = bool ; 8in(3.14)) and

(i s priority b =6 ; 8in(3.74))

is contained in a proper program. }

1A8)

d) No proper program contains a reach containing two operation-declarations]

whose first constituent operators are the same indication and all
Pocramelers

corresponding constituent virtual-deglerers~{fvivivbt of whose first
constituent talls {7.1.1.w, x, z} ;

. ar vireual-éqcl;r;rsypuiFy(h] 3
{e.g, neither the closed—expressM refated fo cne anwobher f2.i4.] i} .

(op max = (int a, int b) int : (a > b | a | b) ;

opmax = (int a, int b) int : (a >b | a | b) ; sin(3.14))
nor (op max = (int a, ref int b) int : (a >b | a | b) ;

op max = (vef int a, int b) int : (a >b | a | b) ; 8in(3.14))
is contained in any proper program, but

(op max = (int a, int b) int : (a » b | a | b) ;

op max = (real a, real b) real : (a >b | a | b) ; ein(3.74))
may be. }

e) No proper program contains s mode-indication which is connected to
{k.k.3.b} itself.
{e.g., neither of the mode-declarations
mode g = a end
mode b = ref b nor the pair of declarations
mode ¢ = ref d ; mode d = proc ¢
is contained in any proper progr'am.}

f) No proper program contains an applied occurrence of an ldentifier
(indication-applied occurrence of a mode-indication or priority-indication,
Operator-applied occurrence of an operator) which does not identify a

defining (an indication-defining, an operator-defining) occurrence.

5. Denotat ions

5,0.1. Syntax
o) denotation : PLAIN denotation ; BITS denotation ; STRING denctation ;
PROCEDURE denotation ; format denotation.
{Examples: _
a) 3.74 3 107 3 "algol.report” ; (bool a, b) bool : (a | b | false) ; fodf
{For plain-denotations see 5.1, for row-of-boolean-denotations see 5.2,
for row-of-character—denotations see 5.3, for routine-denotations see 5.k

and for for'rratQ-denotations see 5.5. }

5.0.2. Semsntics

a) A denotation possesses a value; a given denotation always possesses the

game value; its elaboration involves no action.

1) The mode of the value possessed by a given denotation is obtained by
deleting 'denotation' from that direct production of the notion 'denotatior
of which the given denotation is a terminal production. {e.g. The valhe of
"qlgol. report”, vhich is a production of 'row of character denotation',

is of the mode 'row of character'. }
5.1, Plein denotations

5.1.0.1., Syntax

a)* plain denotation : PLAIN denotation.
b) long INTREAL denotation : long symbol, INTREAL denotation.

{Examples:
a) 4096 ; 3.14 3 true ;
v) long 4096 ; long lomg 3.141592663589793 }

{For integral-denotations see 5.1.1, for real-denctations see 5.1.2
and for boolean-denotations see 5.1.3. }

5.1.0.2. Semantics

a) A plain-denotation possesses a plain value {2.2.3.1}, but plain values
possessed by different pla.ih—denotatiohs are not necessarily different.



5.1.0.2. continued

b) The value of a denotation consisting of a number {possibly zero} of
long-symbols followed by an integral-denctation (real-denotation) is the

"a priori" value of that integral-denctation (real-denotation) provided

that it does not exceed the largest integer {10.1.b} (largest real number

{10.1.4}) of length number one more than that number of long-symbols
{; otherwise, the value is undefined}.

5.1.1. Integral denotations

5.1.1.1, Syntax

a) integral denotation : digit zero ; natural numeral.
b) natural numeral : digit FIGURE, digit token sequence option.

{Examples:
a) 0 ; 4096 ;
b) 7 ;2

5.1.1.2, Semantics

The a priori value of an integral-denotation is the integer which in

decimal notation is written as that integral-denotation in the representatiofy

language {1.1.8}.
{See also 5.1.0.2.b}

5.1.2. Real denotations

5.1.2.1. Syntax

a) real denotation ¢ variable-point numeral 3 Floating-point numeral.

b) variable-point numeral : integral part option, fractional part ;
integral part, point symbol.

) integral part : integral denotation.

1) fractional part :

point symbol, digit zero Sequence option, integral denotation.
) floating-point numeral : stagnant part, exponent part.
) stagnant part : integral denotation ; variable-point numeral.
) exponent part : times ten to the power symbol, power of ten.
) power of ten : plusmins option, integral denotation.

3 83723 ; (Note that 00723 and -7 are not integral-denotations. )

5.1.2.1. continued

{Examples
a) 0.000723 3 1.23e-4 ; b) .723 3 0.723 ; 123.
) 123 ; a) .723 ; .000723
>
e) 7.23e-4 5 T19+5 £) 7 3 7.23 3
g) e=¢ 3 h) 3 ; +45 ; -678 }

5,1.2.2. Semantics

a) The a priori value of a fractional-part is the a priori value of its
integral-denotation divided by ten as many times as there are digit-tokel
in the fractional-part. «

b) The a priori value of a variable-point-numeral is the sum in the sens

of numerical analysis of zero, the a priori value of its integral-part,
if any, and that of its fractional-part, if any {see also 5.1.0.2.b.}.

c) The a priori value of an exponent-part is ten raised to the a priori
value of the integral-denotation in its power-of-ten if that power-of-te:
does not begin with a minus-synbol; otherwise, it is one-tenth raised to
the a priori value of that integral-denotation.

d) The a priori value of a floating-point-numeral i’s«the product in the
sense of numericsl enalysis of the a priori values of its stagnant-part
and exponent-part {see also 5.1.0.2.b.}.

5.1.3. Boolean denotations
5.1.3.1. Syntax
a) boolean denotation : true symbol ; false symbol.

{Examples:

@) frue ; false }

5.1.3.2, Semantics

The value of a true-symbol (false-symbol) is true (false).

5.2. Row of boolean denotations

5.2.1, Syntax

a) BITS denotation : long symbol sequence option, flipflop sequence.



>.1. continued

{Examples:

101 ; long 101}

{For flipflops see 3.0.3.e. }
2.2, Semantics

Let m stand for the nmumber of flipflops in the denotation and n for the
lue of L bits width {10.1.g}, L standing for as many times long as there
e long-symbols in the denctation.

If m < n, then the value of the row-of-boolean-denotation is a multiple
lue {2.2.3.3} whose descriptor has an offset 1 and one quintuple
,n, 1, 1,,1) an_%ghbse element with index i is a new instance of true

N o Yt i L i
alse) if the Jmbk constituent flipflop is a flip-symbol (a flop-symbol)
ri=1, «v., m and of felse for i =m + 1, ..., n {; othervise, the

lue is undefined}.

b
{If the value of bits width is, say, §, then 707)possesses the same
lue as the collateral-expression (faks A

t 7011is not & collateral-expression. } \ £t true  false trut fulse false)

3. Row of character denotations

3.1. Syntax

STRING denotation :
quote symbol, string item sequence option, quote symbol.
string item : character token ; quote image ; other string item.
) quote image : quote symbol, quote symbol.
{Note that, since the Syntax nowhere allows row-of ~character-denotations

y occur following one another, the quote-image can cause no ambiguities. }

{Examples:
) " 3 "a " ; "abcde " ; Ila;+:-b:_ n "’l:BLa_._fOIW Za neee ;

)a;"";?.

) nn } ’

{For character-tokens see 3.0.9.4 and for other-string-items see
n1-5- Step h. } »

5.3.2. Semantics
a) Each character-token and other-string-item, as well as the quote-symbol

{not quote-image} possesses & unique character.

p) The value of & row-of-character-denotation is a multiple value {2.2.3.3]
+hose descriptor has an offset 1 and one quintuple (1, n, 1, 1, 1), where
n stands for the number of string-items contained in the denotation. For

i =1, eeey n, the element with index i of that multiple value is a new
instance of the cheracter possessed by the i-th constituent string-item if
that string-item is a character-token or other-string-item, and otherwise,
{if that string-item is a quote-image} is a new instance of the character

possessed by the quote-symbol.
5.4. Routine denotations

5.4.1, Syntax

a)# routine denotation : PROCEDURE denctation.
b) procedure with PARAMETERS delivering a MODE denotation :
formal PARAMETERS pack, virtual MODE declarer, parameter symbol,
hip adapted MODE primary.
¢) procedure with PARAMETERS denotation :
formal PARAMETERS pack, parameter symbol, primary statement.
a) VICTAL PARAMETERS and a PARAMEIER : .
VICTAL PARAMETERS, comma symbol, VICTAL PARAMETER.
e) formal MODE parameter : formal MODE declarer, MODE identifier.
£) procedure delivering a MODE denctation :
virtual MODE declarer, expression symbol, hip adapted MODE primary.
g) procedure denotation : expression symbol, primary statement.

{Examples:
b) (bool a, b) bool : (a | b | false) 3
e) (ref int ©) : (£ >0 17 =17 -1) 3
d) bool a, b 3 ref int T
[] real = 3 [7 ¢ 70]£_e_a_ly',[_@jm:_1_l_71_§n]g_e_a_liz;
e) bool a ; ref int i ;
£) real expr(p | = | y) ;
g) expr(n = 1966 | warsaw | zandvoort) }
{For hip-adapted-primaries see 8.3.1.a and for primary-statements see
6.2.1.c. }



S.4.2. Semantics

A routine-denotation possesses that routine which would be obtained from

iﬁ by

i) placing an open-symbol before it and a close-symbol after it;

ii) inserting a denotes-symbol followed by a skip-symbol following the
last identifier in each constituent formal-parameter; ‘

iji) deleting the constituent virtual-declarer, if any, preceding the
constituent parameter-symbol or expression-symbol;

iv) replacing the parameter-symbol, if any, by a go-on-symbol, and

v) deleting the expression-synbol, if any.

{For the use of routines, see 8.1 (formulas), 8.2.1 (unaccompaﬁied-
calls) and 8.7 (accompanied-calls). }

5.5. Format denotations

5.5.1. Syntax

a) format denotation :
formatter symbol, format primary list, formatter symbol.
b) format primary : format item ; insertion option, replicator,
format primary list pack, insertion option.
c) format item : MODE pattern, insertion option.
d) insertion : literal option, insert sequence 5 literal.
e) Insert : replicator, alignment, literal option.
f) replicator : replication option.
g) replication : dynamic replication ; integral denotation.
h) dynamic replication : letter n, fitted serial integral expression pack.
i) aligmment : letter k ; letter x ; letter y ; letter 1 ; letter p.
J) literal : STRING denotation option , replicated literal sequence ;
STRING denotation.
k) replicated literal : replication, STRING denotation.

{Examples:
a) fp"table.of"x10a,n(lim-1) (16x32d, 310 (2x+. 12de+2d"+jx"si+.10de+2d) )pf ;
b) p"table.of"x10a ; 3x10(2z+.12de+2d"+jx"gi+.10de+2d) ;
c) L20ke("mon", "tues", "wednes", "thurs", "fri', "satur", "sun") "day " ;
d) p"table.of"x ; "day"
e) p"table.of" ;
g) n(lim-1) 3 10 ;

5.5.1. continued

h) n(lim=1) ;

3) mext s

k) 20". "}

1) sign mould : loose replicatable zero frame option, sign frame.
m) loose ANY frame : insertion option, ANY frame.

n) replicatable ANY frame : replicator, ANY frame.

o) zero frame : letter z.

p) sign frame : plusminus.

q) suppressible ANY frame : letter s option, ANY frame.

r)* frame : ANY frame.

{Examples:
1) "="12z+ ;
m) "="12z ;
n) 12z ;

q) 82 3 70a }

{Formats (see 5.5.2.a) are used by the formatted transput routines
(10.5.4,5) to control "transput", i.e. "input" from and "output" to a
"file™ (10.5.1).

A format-item is used on output to control the "conversion" of a value

to a "string", i.e. a value of mode 'row of character', and, on input,
that of a string to a value.

The mode specified by a format-item is that obtained by deleting 'pattern'
from that notion ending with 'pattern' whose terminal production is the
constituent pattern of that format-item.

Formats have ;.; Eomplementary meaning on input and output; that is, under
iven
control of oneLfOImat—item:

i) it is possible to convert s given value to a string by means of a
formatted output routine, provided the mode specified by the format-
item is "output-compatible" with the mode of the given value, and
the number of characters specified by the format-item is sufficient
(10.5.4) _

‘)ii) it is possible to convert a given string to a value of a given mode,
provided the mode specified by the format-item is "input~compatible"
with the mode of the value, the number of elements of the string is



5.5.1. continued 2

the same as that specified by the format-item, and the individual
characters of the string "agree" with the frames of the format-item
specifying them (10.5.5) ;

iii) if it is possible to convert a given value to a string and the
format-item does not contain a letter-k or letter-y as alignnent;
and the format-item does not contain any digit-frames or character-
frames preceded by letter-s, then it is possible to convert the
resulting string (under control of the same format-item) into a
value; the resulting value is equal (approximately equal) to the
given value if the given value is a string, integer or truth value
(is a real value) ;

iv) if it is possible to convert a given value into a string and to
convert that string into a new value, then converting this new value

to a string yields the same string. }

{The value of the empty replicator is one; the value of a replication
that is an integral-denotation is the value of that denotation; the value
of a dynamic-replication is the value of its constituent fitted-serial-
integral-expression if that value is positive, and zero otherwise.

The number of characters specified by a format-item is the sum of the
numbers of characters specified by its constituent frames and the number
specified by a frame is equal to the value of its preceding replicator.

A frame preceded by letter-s is "suppressed", and the characters
specified by it are also suppressed, i.e.:
on output, are deleted from the string that is output, and,
on input, are inserted in the string that is input, viz., by inserting
the character possessed by a point (times-ten-to-the-power, plus-i-times,
digit-zero, space) -symbol for a suppressed-point (exponent, complex,
digit, character) -frame. )

A format-primary which is not a format-item can control the transput
of a number of values; this number is at most the value of the constituent

replicator times the sum of the numbers of values of which the transput
can be controlled by the constituent format-primaries of its constituent
format-primary-list-pack. '

An Insertion is *performed™ by performing its constituent literals
and/or alignments one after the other.

5.5.1. continued 3

On output, a (replicated-) literal is "eritten” (10.5.4.k) on the file,
starting from the current position on the line, as many times as the
value of the replicator. )

on input, a (replicated-) literal is "required" (10.5.5.b) on the file,.

starting from the current position on the line, as many times as the

value of the replicator. If the string‘pqssessed by the literal is presen
then it is skipped; otherwise, the further elaboration is undefined.

An aligmment may change the current page count, line count and position

on the line of the file as follows: (let n stand for the value of the

preceding replicator)

a) letter-k causes the position on the line to be set to nj

b) letter-x causes the position to be incremented by n (10.5.1.2.m);

¢) letter-y causes the position to be decgemented by n (10.5.1.2.n);

a) letter-l causes the line count to be incremented by n and the

position on the line to be reset to one (10.5.1.2.0)3

e) letter-p causes the page count to be incremented by n and both line

count and position on the line to be reset to one (10.5.1.2.p).
A format-item can be used to "edit" a value as follows:

i) The value is converted by an appropriate output routine (10.5.2.c,
d, e) to a string of as many characters as specified by the format-
item. If the format-item is an integral-pattern, then this conversic
takes place to a base equal to the radix, if present, and base ten
otherwise.

ii) If the format-item contains a sign-mould, then a character specifie

by the sign-frame will be used to indicate the sign, viz., if the
sign-mould contains a minus-symbol and the value is positive
(negative), then a space (minus), and, otherwise, a plus (minus).
This character is shifted in that part of the string specified by
the sign-mould as far to the right as possible across any leading
zeroes and those zeroes are replaced by spaces;
e.g., under the sign-mould 4z+, the string possessed by "+0003" is
edited into that possessed by "...+3". If the format-item does.not
contain a sign-mould and the value is negative, then the result is
undefined.

iii) Leading zeroes in those parts of the string specified by any

remaining zero-frames are replaced by spaces; e.g., under the
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format-item zdzd2d, the integer possessed by 780768 is edited into
the string possessed by "78.768".
iv) Suppressed characters are deleted.
A formab-item can be used to "indit" a string into a value of a

given mode as follows:

i) If il:emi;?{gnha‘i'::&gﬁn_ &?ﬁiaﬂfe E{sign—mould, then the character specifi"}
by the—sd@r-frame is-mequired-as one of the characters specified by
that sign-mould. Only spaces may appear in front of this character
and no leading zeroes may appear after it. The leading spaces are
deleted, and if the character specified by the sign-frame is a sps.ce,":‘
and the sign frame is a minus-symbol, then that character is replaced
by a plus.

1i) Leading spaces in those parts of the string specified by any rema.ini
zero-frame are replaced by zeroes. »

1ii) For each suppressed digit, a zero is inserted into the‘ string; for
each other suppressed character, a space is inserted.

.v) The string is converted by an appropriate input routine (10.5.3.b,
¢, d) into a value of the given mode.

The insertion, if any, preceding the constituent format-primary-list-j
ack of a format-primary that is not a format-item is performed before
he first constituent format-item is used to control the transput of a
alue. The insertion, if any, following that format-primary-list-pack is
erformed after all constituent format-items have been used. }

+5.1.1. Integral patterns

) integral pattern : radix mould optlon, sign mould option,
Integral mould ; integral choice pattern.

) radix mould : radix, letter r.

) radix {'digit two ; digit four ; digit eight ; digit one, digit zero ; ]
digit one, digit six.

) integral mould : loose replicatable suppressible digit frame sequence.f

) digit frame : zero frame ; letter d. 1

) integral choice pattern : insertion option, letter c, literal list pa d

5.5.1.1. continued

{Examples:
a) 2r6d30sd ; 12z+d ; zd"-"zd"-19"2d ;
180ke ( "mon", "tues ", M"ednes”, "thurs " "ﬁ(“b. " Mgotupr " fsun ")
b) 2r ;
c) 23 4385105763
a) zd"-"zd"-79"2d ;
f) Zzokc("rnon ", Iltues ", "wednes "’ "thurs "’ Ilf‘ri "’ "sawr", "sm II) }

{If the integral-pattern is not an integral-choice-pattern, then,

i) on output, the value to be output is edited into a string and
"transcribed onto" the file by, for all frames occurring in the
pattern, first pérforming the preceding insertion, if any, and then
outputting to the file (10.5.1.2.k) that part of the string specified
by the frameg, and, Finally by pevforming bhe {nsarbion iFany, Follewing

ii) c'frt !inxlfl,t‘, an stbzbfr:g' igv'.':;;.x;lscribed from" the file, which string is
obtained by, for all frames occurring in the pattern, first
performing the preceding insertion, if any, and then, for a frame
that is not suppressed, inputting (10.5.1.2.j) from the file as many
characters as are specified by the frame; that string is indited into
a valuey awnd

A+i)—€inally, the insertion, if any, following the last semebituent of bhes
frameSis performed.

If the integral-pattern is an integral-choice-pattern, then the
insertion, if any, preceding the letter-c is performed, and,

i) on output, letting n stand for the integral value to be output, if
n > 0 and the number of literals in the constituent literal-list-
pack is at least n, then the n-th literal is written on the file;
otherwise, the further elaboration is undefined;

ii) on input, one of the constituent literals of the constituent literal-
list-pack is required on the file; if the i-th constituent is the
first one present, then the value is i; if none of these literals
is present, then the further elaboration is undefined;

iii) finally, the insertion, if any, following the constituent literal-
list-pack is performed. }



5.5.1.2. Real patterns

a) real pattern : sign mould option, real mould ; floating point mould.
b) real mould : integral mould, loose suppressible point frame,
integral mould option ;
loose suppressible point frame, integral mould.
c¢) point frame : point symbol.
d) floating point mould :
stagnant mould, loose suppressible exponent frame,
sign mould option, integral mould.
e) stagnant mould : sign mould option, INTREAL mould.
f) exponent frame : letter e.

{Examples:
a) +72d ; +d.71de+2d ;
v) d.71d ; .12d ;
d) +d.77de+2d ;
e) +d.71d }

{On output, under control of a real-pattern, a real or integral value
is edited into a string and transcribed onto the file;
on input, a string is transcribed from the file and indited into a real

value. }
5.5.1.3. Boolean patterns

a) boolean pattern :

insertion option, letter b, boolean choice mould option.
b) boolean choice mould :

open symbol, literal, comma symbol, literal, close symbol.

{Examples:
a) L"pegult"ldxb 3 b("", "error") ;

b) (""", "error") }

{If the boolean-pattern does not contain a choice-mould, then the
effect of using the pattern is the same as if the letter-b were followed
by ("l"s n_qn)_

The insertion, if any, preceding the letter-b is performed,a ml-,
‘)Q‘Q output, if the truth value to be output is true, then the first
constituent literal of the constituent choice-mould is performed, and,

otherwise, the second;

5.5.1.3. continued

ii)é’-ﬁ‘- input, one of the constituent literals of the constituent choice-

mould is required on the file; if the first literal is present, then
the value true is found; otherwise, if the second literal is present,
then the value false is found; otherwise, the further elaboration is
undefinedy ,

;;i);inally, the insertion, if any, following the constituent cholce-mould

js performed. }
5.5.1.4. Complex patterns

a) COMPLEX pattern :
real pattern, loqse suppressible complex frame, real patterri.
b) complex frame : letter 1.

{Example:
a) 2x+. 12de+2d"+jx"gi+. 10de+2d }

{On output, the complex or real or integral value is edited into
a string and transcribed onto the file; on input, a string is transcribed

fram the file and indited into a complex value. }
5.5.1.5. String patterns

a) STRING pattern : )
loose replicatable suppressible character frame sequence.
b) character frame : letter a.

{Example:
- &) p"table.of"z10a }

{On output, a given string is edited into a string and transcribed
onto the filej;
on input, a string is transcribed from the file and indited into a strihg.
If the value to be transput is a character, then a string having one
e€lement is transput.
A string to be output must have as many elements as the number of

characters specified by the format-item. }
5.5.1.6. Transformats

"'a) structured with a STRING named ALEPH transformat :
hip adapted unitary format expression.

{Example: (x20|f5df|fsd"-"f) }



5.5.1.6. continued

. {For unitary-expressions see Chapter 8. }

{Transformats are used exclusively as actual-parameters of out
(10.5.h.8) and 77 (10.5.5.a); for reasons of efficiency, the programmer
has deliberately been made unable to use them elsewhere by the choice of
'ALEPH' (1.2.5.4).

Although transformats are not denotations at all, they are handled
here because of their close connection to formats. }

5.5.2. Semantics

a) The format {2.2.3.4} possessed by a given format-denotation is.the
same sequence of symbols as the given format-denctation.

b) A given transformat is elaborated in the following steps:
Step 1: It is preelsborated {1.1.6.f} ;

Step 2: It is replaced by the format obtained in Step 1, and the thereby
resulting format-denotation is considered ;

5

Step 3: All constituent dynamic-replications {5.5.1.h} of the considered
format-denotation are elaborated collaterally {6.3.2.a}, where the
elaboration of a dynamic-replication is that of its constituent serial-
expression;

Step 4: Each of those dynamic-replications is replaced by that integral-
denotation {5.1.1} which possesses the same value as that dynamic-
replication if that value is positive, and, otherwise, by a digit-zero ;

Step 5: That row-of-character-denotation {5.3} is considered which would
be obtained by replacing, in the considered format-denotation as
moasrich 10, SIE iz %8 COLpEiTient Quotesgubol by  quote-tnage
{5.3.1.c} and .aa.ehkfomatter-symbol by & quote-symbol

Step 6: A new instance of the value of the considered row-of-character-
denotation is made to be the {only} field of a new instance of a

»
E]

structured value {2.2.3.2} whose mode is that obtained by deleting
'transformat' from that notion ending with 'transformat' of which the
given transformat is a terminal production ;

Step T: The considered format-denotation is replaced by the given

transformat, and that transformat is made to possess the structured
value obtained in Step 6.

6. Phrases

6.0.1. Syntax

a)* phrase : COERCETY SOME PHRASE.

b)* clause : COERCETY SOME CLAUSE.

c)* expression : COERCETY SQME MODE expression.

a)# declaration : SOE declaration.

e)* statement : SOME statement.

£)* SOME phrase : COERCETY SOME PHRASE.

g)* SOME clause : COERCETY SCME CLAUSE.

h)* SOME expression : COERCETY SOME MODE expression.

6.0.2. Semantics

a) The elaboration of a phrase begins when it is initiated,"it m%y be )
"interrupted", "halted" or "resumed", and it ends by being "terminated
or "completed", whereupon, if the phrase "appoints" a unitarytphrase as
itsvéuccessof; the elaboration of that unitary-phrase is initiated,

as

except <w-the—eese mentioned in T7.0.2.a.

b) The elaboration of a phrase may be interrupted by'an action {?.g:
overflow} not specified by the phrase but taken by the computer if its
limitations do not permit satisfactory elaboration. {Whether, after ?n
interruption, the elaboration of the phrase is resumed, the elaboration
of some unitary-phrafe is initiated or the elaboration of the progrem

left uvuh.h‘ ne

ends, is met—def£ined in this Report.}

[ ™
i er
¢) The elaboration of a phrase may be halted {10.4.¥}, i.e. no furth .
i il the
actions constituting the elaboration of that phrase take place untl
elaboration of the phrase is resumed {10.4.4}, if at all.



.0.2. continued

) A given clause is "

protected” in the following steps:
tep 1:

If an occurrence of an identifier (indication) which is the same
as some Identifier (indication) occurring outside the given clause

defines {4.1.2.a} (indication-defines {k.2.2.a}) within it, then the
defining (indication-defining) occurrence and all occurrences idenfifying
it are replaced by occurrences of one same -identifier (Indication) which
does not occur elsewhere in the program and Step 1 is taken; otherwise,
Step 2 is taken ; ‘
tep 2: If an occurrence of an indication which is the same as some
indication occurring outside the given clause is operator-defined within
it, then the operator-defining occurrence and all occurrences identifying
it are replaced by occurrences of one same new indication which does not
occur elsewhere in the program and Step 3 is taken; otherwise, the

protection of the given clause is complete ;

tep 3: If the Indlcation is a priority-indication then Step U is taken;
otherwise, Step 2 is taken ; .

bep 4: A copy is made of the priority-declaration containing that occurrence
of the indication which is identified by that operator; the occurrence

of that indication in the copy is replaced by an occurrence of that new
Indication; the copy, thus modified, preceded by an open-symbol and followed
by a go-on-symbol, is inserted preceding the given clause, a close-symbol

is inserted following the given clause, and Step 2 is taken.

{Clauses are protected in order to allow unhampered definitions of
entifiers, indications and operators within ranges and to permit a
aningful call, within a range, of a procedure declared outside it. }

{What's in a name? that which we call a rose

By any other name would smell as sweet.

Romeo and Juliet, William Shakespeare.}

6.1. Serial phrases

6.1.1. Syntax

a)

b)

c)
a)

e)
)

g)
h)

a)

" b)

c)
d)
e)
£)

g)
h)

6.

serial declaration :

chain of unitary declarations separated by go on symbols.
COERCETY serial CLAUSE : declaration prelude option,

chain of COERCETY CLAUSE trains separated by completers.
declaration prelude : serial declaration, go on symbol.
COERCETY CLAUSE train : label sequence option,

statement prelude option, COERCETY unitary CLAUSE.
St::jnnen:)fpruz::'y statements separated by sequencers, sequencer.
sequencer : go on synbol, label sequence option.
label : label identifier, label symbol.
completer : campletion synbol, label.

{Examples:
real x 3 real y(1) ; int n = abs J 3
Z'tru;'l7'l2:x:=a+7,-(x>0IZ3Ix:=7-x);faZse.
: 3 : ]
13 :y =y +1; true ;

real © ;3 int T ; 3

11 : 12 sz =a+1; (x>0 13 | & =17 - x{ ; false ;
x:=a+7,-(x>0ll3|x:=7-x);

s 35 L

1:

.13 0}

{For unitary-phrases see 6.2 and Chapters T and 8. }

1.2. Semantics

'a) The elaboration of a serial-declaration is initiated by initiating
the elaboration of its first comstituent unitary-declaration.

b) The elaboration of a serial—clause is initiated by protecting it

t
{6.0.2.4} and then initiating the elaboratlon of its first constituen
unitary-phrase.



6.1.2. continued

¢) The completion of the elaboration of a unitary-phrase preceding a
go-on-synbol initiates the elaboration of the first unitary-phrase
textually after that go-on-symbol.

d) The elaboration of a serial-phrase is
i)  interrupted (halted, resumed) upon the interruption (halting,
resumption) of a constituent unitary-phrase;

ii) terminated upon the termination of the elaboration of a constituent '

unitary-phrase appointing a successor outside the serial-phrase,
and that successor {6.2.2.4} is appointed the successor of the
serial-phrase.

e) The elaboration of a serial-declaration is completed upon the
completion of the elaboration of its last constituent unitary-declaration.

f) The elaboration of a serial-clause is completed upon the completion
of the elaboration of its last constituent unitary-clause or of that of
a constituent unitary-clause preceding a completer.

g) The value of a serial-expression is the value of that constituent
LYpressivn

unitary

elaboration of the serial-expression, provided that the scope {2.2.4.2}

of that value is larger than the serial-expression {; otherwise, the

the completion of whose elaboration completed the

value of the serial-expression is undefined}l.

{Iny := (x := 7.2 ; 2.3), the value of the serial-expression
& :=17.,2; 2.3 is the real number possessed by 2.3. In
zx := (real r(0.1) ; r), the value of the serial-expression real r(0.7) ; r
is undefined since the scope of the neme possessed by r is the serial-
expression itself. }

6.2. Unitary statements

6.2.1. Syntax

a) unitary statement : formary statement ; MODE confrontation.
b) formary statement : ADIC formula ; called ADIC formula ;
NONPROC ADIC formula ; called NONPROC ADIC formula ; primary statement.
¢) primary statement : CLOSED statement 3 cohesive statement ;
called cohesion ; called NONPROC. cohesion.
d) cohesive statement : jump ; skip ; statement call ; NONPROC cohesion.
e) skip : skip synbol.
f) jump : go to symbol option. label identifier.

6.2.1. continued

{Examples:
a) goto warsa 3 & =+ 7 3
b)up L3 &ty s 8top;
¢) (ac:=7,-y:=0);(x:=7,y:=0);(pl:c:=1|y:=0);

goto grenoble ; stop 3 random ;
a) kootwijk ; skip ; getrandom (x) 3 det(yZ_f i1) 3 =
e) skip 3
f) goto amsterdam ; sandvoort }

{For unitary-declarations see Chapter T, and for unitary-expressions
see Chapter 8. ' ‘
For confrontations see 8.0.1.d, for formilas see 8.1, for called-formula
and called-cohesions see 8.2.1.1.b, ¢, for closed-statements see 6.k4.1.a
for collateral-statements see 6.3.1.b, for corditional-statements see
6.5.1.a, for statement-calls see 8.7.1.c and for cohesions see 8.3.1.Db.

6.2.2. Semantics
a) The elaboration of a skip involves no action.

{For the use of skips as statements and expressions see the remarks
after 8.3.2.4. }

b) The elaboration of a jump terminates the elaboration of the unitary-
clause which is that jump, and it appoints as its successor the first
unitary-clause textually after the defining occurrence {in a label
(4.1.2)} of the label-identifier occurring in the jump.

{Note that the elaboration of a jump may terminate the elsboration of
other phrases (6.1.2.d, 6.3.2.a). }

6.3. Collateral phrases
6.3.1. Syntax

a) collateral declaration : collected declaration.

b) collateral statement : collected statement.

¢) COERCETY collaterdl row of MODE expression :
COERCETY collected MOLE expression.

d) COERCETY collected PHRASE : parallel symbol option, open symbol,
COERCETY unitary PHRASE, comma symbol, COERCETY unitary PHRASE 1is
close symbol.



1. continued

{Examples:

(real x, real y) ; (end, by 9.2.c, d) real =, y 3
(x :=0, y :=1) 3 (x z :=2) ;

(x, n) 3 (1, 2.3, 4.5) }

=0, y :=1,

{For unitary-phrases see 6.2 and Chapters 7 and 8. }
. 2. Semantics

If a number of constituents of a given terminal production of a notion

, "elaborated collaterally", then this elaboration is the collateral

ion {2.2.5} consisting of the {merged} elaborations of these constituenty/y

L is: . ‘
initiated by initiating the elaboration of each of these constituents ;f

 interrupted upon the interruption of the elaboration of any of
these constituents ;

) completed upon the completion of the elaboration of all of these
constituents ; and

| terminated upon the termination of the elaboration of any of these
constituents, and if that constituent appoints a successor, then this

is the successor of the given terminal production.

A collateral-phrase is elaborated in the following steps, where "m"
inds for the number of its constituent unitary-phrases:

p 1: Its constituent unitary-phrases are elaborated collaterally {al;
f it is an expression, then Step 2 is teken; otherwise, its elaboration
.8 complete ;

p 2: If the values of the constituent unitary-expressions of the
ollateral-expression are names {2.2.3.5} one or more of which refers

0 an element or subvalue of a multiple value having one or more states
2.2.3.3.b} equal to zero, or if the values of those unitary-expressions
wre mltiple velues {2.2.3.3} not all of whose corresponding upper (lower)
ounds are equal, then the further elaboration is undefined; otherwise,
Step 3 is taken ;

6.3.2. continued

Step 3: The value of the collateral-expression is a new instance of a
multiple value whose mode is that obtained by deleting 'collateral',
1expression' and the terminal production of 'COERCETY' from {the notion
which is} that direct production of 'collateral expression' of which
the given collateral-expression is a terminal production; this new
multiple value is established as follows:.
if
the values obtained in Step 1 are not multiple values

then
its element with index "i" is a new instance of the value of the
j-th constituent unitary-expression and its descriptor consists of an
offset 1 and one quintuple (1, m, 1, 1, 1);

otherwise, those values are multiple values and the elements with
indices (i-1) xr + j, j = 1, +os, r of the new value, where r stands
for the number of elements in one of those values, are the elements of
the value of the i-th constituent unitary-expression and the descripto
of the new value is a copy of the descriptor of the value of one of
the constituent unitary-expressions in which an additional quintuple
(1, m, r, 1, 1) has been inserted in front of the old first quintuple,

and, for
-1+ 1) x

the offset has been set to 1,
i=n,n-1, «.., 2, the stride di-1

{@ho-fmzmuunuLJuLl§pﬁrallel-symbol makes it possible to control the

progress of the elaborations of the constituent unitary-phrases by means

dn has been set to 1,

has been set to (ui

. of the synchronization operations of 10.4. }

6.4, Closed phrases
6.4.1. Syntax

a) COERCETY closed PHRASE :
elementary symbol option, open, COERCETY serial PHRASE, close.

{Examples:
a) (real x = u) ; elembegin © =1 + 1 ; J 1= +1 end increment ;¥

éEnx_serial=phnaﬂnL4ne—6r+—und—fui;opensfana—e&eses—soe-avovéqu-Or—¥
) (; begin
L) )/ eLd_ ] g -QVW’ n\tvvmvlnb}

{ For sevial phru-'s See 6'.}

Q) openiopen Srmbcl l)fguhSyMbal



4.2. Semantics

' The elaboration of a closed-phrase is that of its constituent serial-
1'ase .

' The value of a closed-expression is that, if any, of its constituent
rial-expression. ,
 The elaboration of a closed-phrase which begins with an elementary-
mbol is an elementary action {2.2.5}.

5. Conditional clauses
5.1. Syntax

COERCETY conditional CLAUSE :
if symbol, COERCETY cholce CLAUSE, fi symbol.
COERCETY cholce CLAUSE :
condition, COERCETY then CLAUSE, COERCETY else CLAUSE option.
cordition : fitted serial boolean expression.
COERCETY THELSE CLAUSE : THELSE symbol, COERCETY serial CLAUSE.

{Examples:

(x>0 | ax] 0) ("adapted" iny := (x>0 | = | 0)) ;
if overflow then exit fi ;

>0 | x| 0; overflow then exit ;

x > 0 ; overflow ;

H
| 2 ;1 0 ; then exit)
{For serial-clauses see 6.1.1.b.}

5.2. Semantics

A conditional-clause is elaborated in the following steps:
ep 1: Its constituent condition is elaborated ;

ep 2: If the value of that condition is true, then its constituent then-

clause and otherwise its constituent else-clause, if any, is considered ;

ep 3: The clause following the then-symbol or else-symbol of the

considered clause, if any, is elaborated H

ep 4: If the conditional-clause is a corditional-expression, then its
value is that of the clause elaborated in Step 3, if any; otherwise,
its value is undefined.

6.5.2. continued

b) The elaboration of a conditional-clause is

i) interrupted (halted, resumed) upon the interruption (halting,
resumption) of the elaboration of the condition or the considered cl:

ii) completed upon the completion of the elaboration of the considere
clause, if any; otherwise, completed upon the completion of the
elaboration of the condition; and

iii) terminated upon the termination of the elaboration of the conditi
or considered clause, and, if one of these appoints a successor, the

this is the successor of the conditional-clause.



T. Unitary declarations
T.0.1. Syntax

a) unitary declaration : mode declaration H
priority declaration ; identity declaration H
operation declaration ; closed declaration ; collateral declaration.

{Examples:

a) mode bits = [1 : bits width] bool ;
priovity plus = 1 ;
int m = 4096 ;g'ﬂ_l_':c;b_oo_lcomplete(ﬁgg) 3
proc sgn = (real x) int : (x =011 | sign ) ;
op # = (real a, b) int * (round a + round b) ;
(real x = u) ; real x, y }

7.0.2. Semantics

a) If, during the elaboration of an expression contained within a unitary-
declaration, a jump is elaborated {6.2.2. d} whose successor is a unitary-
clause outside that declaration but within the smallest rangs

containing it, then the further elaboration is undefined.

b) An external ol?ject {2.2.1} vhich was caused to possess a value

by the elaboration of a declaration ceases to possess that value
upon termination or completion of the elaboration of the smallest range
containing that declaration.

{For mode-declarations see 7.2, for priority-declarations see T.3,
for identity-declarations see T. 4, for operation~declarations see T.5,
for closed~declarations see 6.4 and for collateral—declarations see 6.3.}
{The elaboration of the closed-expression

egm[7 : (gotoe; 5)linta; e : al7] =1 end
is undefined, according to a. }

T«1. Declarers
T.l.1. Syntax

a)#* declarer : VICTAL MODE declarer.
b) VICTAL MODE declarer :

VICTAL MODE declarator ; MODE mode indication.
¢) VICTAL PRIMITIVE declarator : PRIMITIVE symbol.
d) VICTAL long INTREAL declarator :

long symbol, VICTAL INTREAL declarator.

{Examples:
b) real ; bits ;
c¢) int 3 real ; bool ; char ; format ;

a) Zong int ; long lomg real }

e) VIRACT structured with FIELDS declarator :
structure symbol, VIRACT FIELDS declarator pack.
£) VIRACT FIELDS and a FIELD declarator :
VIRACT FIEIDS declarator, comma symbol, VIRACT FIEILD declarator.
g) VIRACT MODE named TAG declarator :
VIRACT MODE declarer, MODE named TAG selector.
h) MODE named TAG selector : TAG.
i)# field SELERATOR : FIELD SELERATOR ; VIRACT FIELD SELERATOR.

{Examples:
e) struct(string name, real value) ;

£) string name, real value ;
g) string name ;

h) name }

J) virtual reference to MODE declarator :
reference to symbol, virtual MODE declarer.
k) actual reference to MODE declarator : )
reference to symbol, virtual MODE declarer.
1) formal reference to NONREF declarator :
reference to symbol, formal NONREF declarer.
m) formal reference to reference to MODE declarator :
reference to symbol, virtual reference to MODE declarer.



Telel. continued

{Examples:

J) ref (1 real ;
k) ref [] real ;

1) refli7
m) ref ref [ real }

n)
o)
p)
a)
r)
s)

t)

u)

n)

o)

p)7:my

: int nl real ;

VICTAL ROWS NONROW declarator : sub symbol, VICTAL ROWS rowef,
bus symbol, virtual NONROW declarer.
VICTAL row of ROWS rower :
VICTAL row of rower -epbdem, comma symbol, VICTAL ROWS rower.
VICTAL row of rower : ‘ -
VICTAL lower bound, up to symbol, VICTAL upper bound; Eﬁ?rr
formal LOWPER bound :
flexible LOWPER bound ; strict LOWPER bound ; virtual LOWPER bound.
actual LOWPER bound : strict LOWPER bound ; virtual LOWPER bourd.
virtual IOWPER bound : EMPTY. '
strict LOWPER bound : hip fitted integral formary.
flexible LOWPER bound : integral symbol, integral identifier.

{Examples:
(7 :m 1 : nl real ;
Tem 1:ny ,01:n;

/

Dintnz;i+gj;

r)i+j; H

t) L+ 4

u) int n }

v)
W)
x)
y)
z)

VICTAL PROCEDURE declarator : procedure symbol, PROCEDURE tail.
procedure tail : EMPTY.
procedure with PARAMETERS tail : virtual PARAMETERS pack.
virtual MODE parameter : virtual MODE declarer.
procedure PARAMETY delivering a MODE taii :

procedure PARAMETY tall, virtual MODE declarer.

T.1.1. continued 2

{Examples:
v) proe ; proe(real, int) ; proc(real, int) bool ;

w) 3

x) (real, int) ;

y) real ;

2) (real, int) bool }

aa) VICTAL union of MODES mode declarator :
union of symbol, virtual MODES declarer pack.
ab) virtual MODES and MODE declarer :
virtual MODES declarer, comma symbol, virtual MODE declarer-.

{Examples:
aa) union(int, bool) ;
ab) int, bool }

"{Rule g, together with 1.2.1.k, 1, m, n, o, p and k.1.1.c, d, leads to
an infinity of production rules of the strict language, thereby enabling
the Syntax to "transfer" the field-selectors (i) into the mode of
structured values, and making it ungrammatical to use an "u.nknown" field-
selector in a field-selection (8.6). Concerning the occurrence of a given
field-selector more than once in a declarer, see 4.L.2, which implies
that struct(real x, int x) is not a (correct) declarer, whereas

styuct (real x, struct(int x, bool p)p) is.
Notice, however, that the use of a given fleld-selector in two different

declarers within a given range does not cause any ambiguity. Thus,
mode cell = struct(string name, ref cell next ) and
mode link = struct(ref link next, ref cell value)

may both be present in some range.

Rules j, k, 1 and m imply that, for instance, refl7 : int n] real =
may be a formal-parameter (5.L.1.e), whereas ref refl7 : int n) real x
may not. } )

1



T.1.2. Sementics

a) A given declarer specifies that mode which is obtained by deleting

'declarer' and the termina.} prgduction of the metanotion 'VICTAL' from
that direct production {1.2.2.8} of the notion 'declarer' of which the
given declarer is a production.

b) A given declarer is "developed" as follows:

Step: If it is, or contains, a mode-indication which is either an actual-
declarer net-preeceded-ty-a-reforenee=to-Symbeody or e formal-declarer
net-preveded—ty-two-referense—to—syMbets, then that indication is
replaced by a copy of the constituent actual-declarer of that mode-
declaration {7.2} which contains its indication-defining occurrence
{4.2.2.b}, and the Step is taken again; otherwise, the development
of the declarer is-complese» hos bosw accomplishad.

{A declarer is developed during the elaboration of an actual-
declarer (c) or identity-declaration (7.4.2. Step 1):3%0-eaieep'b-i-ens

R CeEETRLE--1H0-0PC - TIoC are made 11 Oweer

¢) A given actual-declarer is elaborated in the following steps:

Step 1: It is developed {Db} ;

Step 2: If it now begins with a structure-symbol, then Step 4 is taken;
otherwise, if it now begins with a sub-symbol, then Step 5 is taken;
otherwise, if it now begins with a union-of-symbol, then Step 3 is taken;
otherwise, & new instance of a value of the mode specified {al by the
given actual-declarer is considered, and Step 8 is taken ;

Step 3: Some mode is considered which does not begin with 'union of' and
from which the mode specified by the ' given actual-declarer is united
{2.2.4.1.,h}, a new instance of a value of the considered mode is
considered, and Step 8 is taken ;

Step 4: All its constituent actual-declarers are elaborated collaterally
{6.3.2.a}; the values referred to by the values {names} of these actual-
declarers are made, in the given order, to be the fields of & new
instance of a structured value of the mode specified by the given

actual-declarer, this structured value is considered, and Step 8 is
taken ;

T.1.2. continued

Step 5: All its constituent strict-lower-bounds and strict-upper-bounds
are elaborated collaterally ;

Step 6: A descriptor {2.2.3.3} is established consisting of an offset 1
and as many quintuples as there are constituent actual-row-of-rowers
in the given declarer; if the i-th of these actual-row-of-rowers
contains a constituent strict-lower-bound (strict-upper-bound), then
li(ui) is set equal to its value and si(ti) to 1, and otherwise si(ti)
is set to 0 {and 1.(ui) is 1‘11_1d.e~fi a} :,'va\ d, is set bo 1,0nd, for Jom n-

Stet;'; 4!'TS:E'T‘IO};; ‘tlicte-s‘t:r‘isp%; igom(a:lié to ~tole ghe‘éescriptor of a multiple value
of the mode specified by the given actual-declarer; each of its
elements is a new instance of some value of some mode {not beginning
with 'union of' and} such that the mode specified by the last
constituent virtual-declarer is or is united from {2.2.4.1.h} it;
this multiple value is considered ;

Step 8: A name {2.2.3.5} different from all other names and whose mode
is 'reference to' followed by the mode specified by the actual-
declarer, is created and made to refer to the considered value; this
neme is then the value of the given actual-declarer, upen—the—somplation

. s ba—ekaborat

T.2. Mode declarations

T.2.1. Syntax _

a) mode declaration : mode symbol, MODE mode indication, equals symbol,
actual MODE declarer.
{Examples:

a) mode bite = (1 : bits width] bool ;
struct compl = (real re, im) (see 9.2.b, c.) ;

wnion primitive = (int, real, bool, char, format) (see 9.2p) ‘}

T+2.2. Semantics
The elaboration of a mde-declaration involves no action.

{See 4.4.2. concerning certain mode-declarations which are not
contained in proper programs. }



T.3. Priority declarations
7.3.1. Syntex

a) priority declaration : priority symbol, priority NUWMBER indication,
equals symbol, NUMBER token.

b) one token : digit one symbol.

c) TWO token : digit two symbol.

d) THREE token : diglt three symbol.

e) FOUR token : digit four symbol.

f) FIVE token : digit five symbol.

g) SIX token : digit six symbol.

h) SEVEN token : digit seven symbol.

i) EIGHT token : digit eight symbol.

j) NINE token : digit nine symbol.

{Example:
a) priority + = 6 }
T.3.2. Semantics

The elaboration of a priority-declaration involves no action.

{For a summary of the standard priority-declarations, see the remarks
in 8.1.2. } '

T.4. Identity declarations
T.4.1. Syntax

a) identity declaration :

formal MODE parameter, equals symbol, actual MODE parameter.
b) actual MODE parameter : MODE transformat ;

hip adapted unitary MODE expression ; local MODE generator.

{Examples:

a) real e = 2.718281828459045 ; int e = abe 7 ;
real d = re(z x conj z) ;gej_‘[,]g_e_c_z_l—;-l-=a[,
ref real xTk = x1[k] 3 compl unit = 17
proc int time = clock ¢ cycles

k1

(The following declarations are given first without, and then with,
the extensions of 9.2.)

s loe real }
vl s oo real} |
{For formal-parameters see 5.4.1.e, for hip-adapted-unltary-expressions
see 8.0.1.a, for local-generators see 8.5.1.b and for transformats see 5.5.1

T.4.1. continued

ref real x = loc real ; real x ;
ref int eun = loo int (0) ; int sum (0) 3
refl,] real a = loell:m, 1:nl real(x2) 3 L1:m, 1:n] real a(x2) ;

proc(real) real vers = (real x) real : (1 - ecos(x)) ;

proc vers = (real x) real : (1 - cos(x)\) 3
ref proc(real) real p = loc proe(real) real ; proc(real) real p ;

ref proce(real) real q = loc proc(real) real((real x) real : (x >0 | & | 1

proc q((real x) real : (x>0 | x| 7)) ;
f-ﬁ-d-ﬂde*'«lAi; '

7.4.2. Semantics

An identity-declaration is elaborated in the following steps:

Step 1: Its textually first constituent formal-declarer {in the formal-
parameter} is developed {7.1.2.b} ;

Step 2: Its textually last constituent actual-parameter, and all
strict-lower-bounds and strict-upper-bounds contained in that formal-
declarer, as possibly modified by Step 1, but not contained in'a.ny
constituent strict-lower-bound or strict-upper-bound of that formal-
declarer, are elaborated collaterally {6.3.2.a} ;

Step 3: If the value of that actual-parameter refers to an element or
subvalue of a multiple value {2.2.3.3} having one or more states equal
to 0, then the further elaboration is undefined ;

Step 4: Each defining occurrence {4.1.2.a}, if any, of an identifier

in a constituent flexible-lower-bound or flexible-upper-bound of that

formal-declarer is made to possess a nev instance of the value of the

which i oris raferred €o by the value
corresponding bound in the {multiple} value Lof that actual-parameter ;
¢ constituent strict-lower-bourd or strict-

upper-bound , or-tho—value—ofmry—tdentifier—t8-3T2 g T aconstituent
frextbie=TOWET=bouor—texthTeUpper=poul of that formal-declarer

. whick is_ov is vefersed €o by thevalue

is not the same as that of the corresponding bound in the valuefof
that actual-parameter, then the further elaboration is undefined;
otherwise, the identifier following that formal-declarer is made to

possess & new instance of the value of that actual-parameter.

atl C\pp'u‘m‘ geearrences {lf,(.l.b} of
lower- hoand s awd Flexible cupper-

ove elaberabed §9.3.2.a3 collaberally; (€ the value o€ vy of

i dentifievs in constituent Flei ble -
beands of tha€C Fuvmal-o{odaqw



4.2, continued

{According to Step 5, the elavoration of the declaration

{7 : 23 real x = (1.2, 3.4, 5.6)
3 undefined, as is that of
L7 : int n, 17 : int nl real x = ((1.1, 1.2), (2.1, 2.2),
: (3.7, 3.2)). }

5. Operation declarations
5.1. Syntax

operation declaration :

OPERATTVE caption, equals synbol, actual OPERATIVE parameter.
OPERATTVE caption :

operation symbol, OPERATIVE tail, OPERATIVE ADIC operator.
{Examples: _
op abs = (real a) real : (q < 0 | =a | a) (see 9.2.7) 3
op A = (bool a, b) bool : (a | b | false) ;
op (real) real abs 5 op(bool, bool) bool A }

{For actual-parameters see T.-4.1.b, for talls see Tetolow,
* operators see 4.3. }

X, Z and

+2. Semantics

operation-declaration is elaborated in the following steps:
actuel~ pavamater

P 1: Its constituent esmpxessicn is elaborated ;
. Faxtually Elvst
p 2: The operator preceding its Lconstltuent equals~-symbol is made

© possess the {routine which is the} value obtained in Step 1.

{The formula (8.1) P A q, vhere A identifies the operator—defihing
urrence of A in the operation-declaration

op A = (bool john, proc bool mecarthy) bool : (john | meearthy | false),
Sesses the same value as it would if A identified the operator-
ining occurrence of A in the operation-declaration

o = (bool a, b) bool : (a.| b | false), ... .
*pt, pogsibly,
.}

vhen the elaboration of q involves side effects on that

8. Unitary expressions
8.0.1. Syntax

a) COERCETY unitary MODE expression :

COERCETY MODE farmary ; COERCETY MODE confrontation.
b) COERCETY MODE formary : -

COERCETY MODE ADIC formula 3 COERCETY MODE primary.
¢) hip FORCED MODE ADIC formula : FORCED MODE ADIC formula. ‘
d) hip FORCED MODE confrontation : FORCED MODE ABRIC~forada. Con Eronta
e) MODE confrontation : MODE assignation ;

MODE confarmity relation ; MODE identity relation.

{Examples:
a) k+ 17 ; x :=3.74 ;
) k+ 17 ;2 ; nil
e)i+J (dnzx =72+ 4);
e) z :=3.74 ; ec :: e (see 11.11.q) ; val xx :=: x or y }
{For formulas see 8.1, for primaries see 8.3, for assignations see 8.
for conformity-relations see 8.9 and for ldentity-relations see 8.10. }

8.1. Formulas
8.1.1. Syntax

a)# COERCETY formula : COERCETY ADIC formula DELIVETY.

b) MODE ADIC formula : ADIC formula delivering a MODE.

c¢) PRIORITY formula DELIVETY : IMODE PRIORITY operard, procedure with :
IMODE parameter and a RMODE parameter DELIVETY PRIORITY operator,
RMODE PRIORITY plus one operand.

d)* operand : MODE ADIC operand.

e) MODE PRICRITY operand : |
adjusted MODE PRIORITY formula ; MODE PRIORITY plus one operard.

f) MODE priority NINE plus one operand : MODE monadic operand.

g) MODE monadic operand-: - -~ = - ' - -
adjusted MODE monadic formula ; hip adjusted MODE primary.

h) monadic formula DELIVETY : dep DELIVETY ; procedure with a RMODE
parameter DELIVETY monadic operator, RMODE monadic operand.

i) dep delivering a MOLE :
value of symbol, peeled reference to MODE monadic formila ;
value of symbol, hip peeled reference to MODE primary.

j)# depression : dep DELIVETY.



i ——————
Tl contmet 8.1.2, continued
{Examples:
e +y 3 a+ b4 -2, (priority 6, 6)
b x (@a>0 | al goto exit) ; b 4 -2; (priority T,8)

{The following table summarizes the operato declared in
the standard-declarations (10.2.0).

’ sr_i/“) < priority monadic
Ha > 0| a | goto exit) ; € 3) ,
| T 1 ol 3| uwys|6lT7]8]9
 val xx 3 -2 3 , :
 val xx } minus { v{al=1<1- xib — - +down
»lus £l <]+ = abs bin repr
. s rt
{For adjusted-formulas see 8.2.0.1.4, for hip-adjusted-primaries and times .z + leng SI'fo
eled-primaries see 8.3.1.a and for peeled-formulas see 8.2.1.1.e.’ } over > / odd sign
‘ modb round entier
1.2, Semantics prus Ye un cong up
. = f (4 -1 A 2 = 3)
A formula other than a depression is elaborated in the following steps: Observe that the value of (- 7 A 2 + ¢ = 5) and that o .
- ; 3 - i monadic-operator
ep 1: The formula is replaced by a copy of the routine possessed by the both are true, since the first minus-symbol is a pe
constituent operatar at its operator-defining occurrence {7.5.2, l+.3.21.b} 3 whereas the second 1i{dé3£?£l-ﬁ _ - mien fo a5 are elaborated
ep 2: The copy {which is now a closed-expression} is protected {6.0.2.d} ; Although the Syntax defines the order in whic rmul , ’
ep 3: The skip-symbol {5.4.2.ii} following the equals-symbol following parentheses may well be used to improve readablllty,}e-s-
' 3 A= b,
the textually first constituent formal-parameter of the copy is (a Ab) vV (ma A —b) instead of a A b Vv a A
replaced by & copy of the textually first constituent operand of the
formula, and if the constituent operator is not a monadic-operator 8.2. Coercends
then the skip-symbol following the equals-symbol following the
textually second constituent formal-parameter of the copy is replaced 8.2.0.1. Syntex

by & copy of the textually second constituent ole‘erand of the formula ; a)* coercend : FORCETY COERCEND.
65 value, i€any, i< EhenEnat of Ehe formala; .

ep 4: The elaboration of the copy is initiated; Lif this eleboration b)% FORCED coercend : FORCED COERCEND.
¢) adapted COERCEND :
adjusted COERCEND ; widened COERCEND ; arrayed COERCEND.

d) adjusted COERCEND :
A depression is elaborated in the following steps:

fitted COERCEND ; expressed COERCEND ; united COERCEND.
*p 1: Its constituent peeled-formula or hip-peeled-primary is elsborated H e) fitted COERCEND : COERCEND ; called COERCEND ; depressed COERCEND.
ep 2: The value of the depression is a new instance of the value referred '

to by the name obtained in Step 1.

is completed or terminated then the copy is replaced by the formula

before the elaboration of & successor is initiated.



.2.0.1. continued

{Examples:
Ymyn i=m 3 x:=n:=m(in [] real x1 = (x :==n =m))

Yz 3 x 3 « (in wnion(bool, proc real) bpr = x) 3
) 3.14 3 random 3 x (in 3.74 + random + x) }

{For called-coercends see 8.2.1, for expressed-coercends see 8.2.2,
or depressed-coercends see 8.2.3, for united-coercends see 8.2.4, for
idened-coercends see 8.2.5 and for arrayed-coercends see 8.2.6.}

{The coercion process may be illustrated by considering the analysis
¢ random in random + x. According to 10.2. 3.i, 10.2.0.a and 8.1. i.b,C
andom + x is & real—priority-SIX-fommla and random must therefore be
, real-priority-SIX-operand, vhich may be produced as a procedure-
lelivering-a-real-identifier (see 10.3.k and T.h.1.a.) as follows:
eal ~priority-SIX-operand,

'-eal-priority-SEVEN-operand (8.1.1 ﬁ),

real-priority-EIGHT-operand (8.1. 1.2),

real-priority-NINE-operand (8.1. 1.2),
:'eal-priority-NmE—plus—one-?perand (8.1. 1.;!),

real-monadic-operand (8.1.1.4),

hip-adjusted-real-primary (8.1.1 ) .

hip-adjusted-real-cohesion (8.3.1. a),

adjusted-real-cohesion (8.3.1 .c),

fitted-real-cohesion (8.2.0.1.d),

called-real-cohesion (8.2.0.1.e),
fitted-procedure-delivering-a-real-cohesion (8 2.1.1.b),
procedure-delivering-a-real-cohesion (8.2.0. 1.e) s
procedure-delivering-a-real-identifier (8.3.1 4 ).

A coercion is derived from the context and is passed on by the Syntax
until it meets a coercend (i.e., formula, cohesion or confrontation),

vhere it is activated (i.e., stripped, called, expressed, depressed, united,

widened or arrayed). In the sbove example, the coercion was activated
by & called-cohesion which resulted in an unaccompanied-call (8.2.1).
The relevant Semantics appears in 8.2.1.2, vhere it is explained that

the routine denoted by random must be elaborated and deliver a real value

as the value of the left operand of the operator +. }

8.2.1. Unaccompanied calls
8.2.1.1. Syntax

a)# unaccompanied call : called COERCEND ; stripped COERCEND.
b) called MOIE FORM : fitted procedure delivering a MODE FORM.
c) called FORM : fitted procedure FORM.

d) stripped COERCEND : peeled procedure delivering a COERCEND.
e) peeled COERCEND : COERCEND ; stripped COERCEND.

{Examples:
b) random (in random < .5) 3
c¢) stop (in ; stop ;) ;
d) xor y (inxory' = a) 3
ez ;xory (inz :=:xory)}

8.2.1.2. Semantics

An unaccampanied-call is elaborated in the following steps:
Step 1: It is preelaborated {1.1.6.f} and a copy is made of {the routine
which is} the resulting value ;.

Step 2: The unaccompanied-call is replaced by the copy obtained in Step 1

ibs value, iany, (s Chenthat of the unaccompanied call;
and the elaboration of the copy is initiated; l\lf this ela.boratlon is

completed or terminated, then the copy is replaced by the macconpanied

call before the elaboration of a successor is initiated.
{See also 8.7.2, accompanied-calls. }

8.2.2. Expressed coercends
8.2.2.1. Syntax

a) expressed procedure delivering a COERCEND :
COERCEND ; hip expressed COERCEND ; depressed COERCEND.
b) expressed procedure cohesion : cohesive statement.

{Examples:
a) 2 x random - 1 (in proc real »1(2 x random - 1)) ;

b) zandvoort (in proc go to = sandvoort) }
{For cohesive-statements see 6.2.1.d. }

8.2.2.2. Semantics

' An expressed-coercend is elaborated in the following steps:

Step 1: A copy is made of it {itself, not its value} ;



,2.2.2. continued R i

tep 2: That routine {5. 4.2} which is obtained from the copy by placing
an open-symbol before it and a close-synbol efter it is the value of

the expressed-coercend; its mode is that obtained by deleting 'expressed'

and the terminal production of 'FORM' from that notion as terminal
production of which the expressed-coercend is elaborated.

{If el, e2 and e3 are label-identifiers, then the reader might
ecognise the effect of the declaration (1] proc switch = (el, e2, e3)
nd the unitary-statement switch[Z] 3
owever, the declaration [7:3] proc switch(el, e2, e3)

s perhaps more pow.erful, gince the assignation switehl[2] := el

s possible.

he elaboration of real expr(p | x J -x) yields the routine ((p | x | =x)),

““I tionol ~e1p14$sws\ Eh-e voutine

hereas that of the expressed-oceneend
Ine
'—x), depending on the value of p. Smlla.rly, the elaboration of

eal expr p(x 1= x + 1 ; y) yields the routine ((x :==x + 1 ; y)), vhereas
S*vt“ R ¥ PrEshic N
-coereend

hat of the express
n the value of x, the routine (y). On the other hand, if C stands for
».g. & formula (8.1) or cohesion (8.3.1.b), then the elaboration of
real expr C and that of the expressed-coercend C both yield the routine
(c)s }
3,2.3. Depressed coercends {"I ca'n't go no lower", said the
Hatter, "I'm on the floor as it is".
Alice's Adventures in Wonderland,
Lewis Carroll.}

8.2.3.1. Syntax

a) depressed COERCEND : fitted reference to COERCEND.
{Example:

a) x (inx 4 2) }

8.2,3.2. Semantics

A depressed-coercerd is elaborated in the following steps:
Step 1: It is preelaborated {1.1.6.f} ;
Step 2: The value of the depressed-coercend is a new instance of the

velue referred to by the neme obtained in Step 1.

x | =-x) yields e1therL(x) or th-¢

(x :=x + 1 ; y) yields, apart from a change

8.2.4.1. Syntax

a) united union of IMODESETY MODE RMODESETY mode FORM
adjusted MODE FORM.

{Examples:
a) one (in f + one, see 11.11.bb) ; b (in b + &, ivid.) 3
call (fdash, g) (in 11.11.af) } .

{In a range containing

wiion b = (int, bool), rb = (real, bool) ;

wrion rib = (veal, ib) ;
as declarations,

ib ib1(1), ib2(true) ; rb rb(true) ;

rib rib1(1), rib2(ib2), rib3(1.5), ribd(p | 1 | true)
are initialised declarations, but

rib rib5(rb)

is not. 1}
8.2.5. Widened coercends
8.2.5.1. Syntax

a) widened LONGSETY real FORM : fitted LONGSETY integral FORM.
b) widened structured with a REAL named letter r letter e and a REAL
named letter 1 letter m FORM : fitted REAL FORM ; widened REAL FORM.

{Exemples:
8, b) 7 (in compl(7)) }
8.2.5.2. Sementics

A widened-coercend is elaborated in the following steps:

Step 1: It is preelaborated {1.1.6.f} ;‘

Step 2: If the value yielded by Step 1 is an integer, then the value of
the widened-coercend is a new instance of that real number which is
equivalent to that integer {2.2.3.1.d}; otherwise, it is a new instance
of that structured {complex (10.2.5)} value composed of two fields,
whose field-selectors are letter-r-letter-e and letter-i-letter-m, whos
modes are the same as that of the value yielded in Step 1 and which
are new instances of that value and zero respectively; its mode is that
obtained by deleting 'widened' and the terminal production of 'FORM'
from that notion as terminal production of which the widened;coercerﬁ

is elaborated.



6. Arrayed coercends 8.2.6.2. continued

6.1, Syntex ' : Step 6: The mode of the considered value is that obtained by deleting
irrayed REFETY row of MODE confrontation : tarrayed', the initial 'reference to', if any, and the terminal
adapted REFETY MODE confrontation. production of 'FORM' from that notion as terminal production of
rrayed REFETY row of MODE ADIC formula : which the arrayed-coercend is elaborated; if that notion begins with
adapted REFETY MODE ADIC formula. , tarrayed row of', then the value of the arrayed-coercerd is the
rrayed REFETY row of MODE cohesion : adapted REFETY MODE cohesion option. considered value; otherwise, a name different from all other names

and whose mode is 'reference to' followed by the mode of the considered
(Examples: ,

value is created and made to refer to the considered value, and this
¢ := 3.74 (in [7 : int nl real a = x := 3.74) ;

neme is then the value of the arrayed-coercend.
¢+ y (in [7 : dnt n]l real a = x + y) ; :

s 1.2 5 (3.4, 5.6) . ) 8.3. Primaries

(in (7 : int m, 7 : int n] real x7 = case © in , 1.2, (3.4, 5.6) esaa)} 8\3 ] Syntex

6.2, Semantics &) COERCETY MOLE primary :

rrayed-coercend is elasborsted in the following steps: COERCETY CLOSED MODE expression ; COERCETY MODE cohesion.

» 1: If it is not empty, then it is preelaborated, and Step 3 is b) MODE cohesion : MODE denotation ; MODE identifier ; MODE slice ;

aken nonlocal MODE generator ; MODE named TAG selection ; MODE expression cal
» 2: A new instance of a multiple value {2.2.3.3} composed of zero - ¢) hip FORCED MODE cohesion :

|lements and a descriptor consisting of an offset 1 and one quintuple FORCED MODE cohesion ; MODE hop ; MOLE nihil.

1, 0, 1, 1, 1) is considered, and Step 6 is taken ; d) NONPROC hop : skip ; Jump.

> 3: If the value obtained in Step 1 is a name, then the value e) refe;r'ence to MODE nihil : nil symbol.

2ferred to by this name, and, otherwise, the value itself obtained (E les:

a) (a | b | false) ; sin(b - a) ;
b) true ; x 3 x2[Z, §1 5 campl(71, 0) ; father of algol ; sin(b - a) ;

1 Step 1 is considered; if the considered value is a multiple value,
1en Step 5 is taken ;.

> 4: A new instance of a multiple value composed of the considered c). z (in y = z) s ekip ; nil ;

4) skip ; goto gremoble ;
e) il }

alue as only element, and a descriptor consisting of an offset 1
1d one quintuple (1, 1, 1, 1, 1) is considered instead, and Step 6

3 taken .
’ {For collateral-expressions see 6.3.1.c, for closed-expressions see 6.k,

for conditional-expressions see 6.5, for denotations see 5, for identifiers
see 4.1, for slices see 8,4, for generators see 8.5, for fleld-selections

> 5: A new instance of a multiple value is created, composed of
1e elements of the considered value and a descriptor which is a
opy of the descriptor of the considered value into which the
iditional quintuple (1, 1, 1, 1, 1) {the value of the stride is
-relevant} is inserted before the first quintuple, and in which
L1 states have been set to 1, and this new multiple value is
nsidered instead ;

€
see 8,6, for expression-calls see 8.7, for skips see 6.2.1.¢ and for jumps
see 6'2o1ofc }



2 - Py ving
B.Q%lns‘eﬁu ?:i?.\;cnh“ by comt ; new instant of
iqjthe value, if any, possessed by its

Fining occurrence {k.1.2, T.h.2. Step 51 ibs value is Ehen the
sidered value.
(The identifier pi as declared in the standard declaration 10.3.a

a real-identifier (and not a reference-to-real-identifier). Its
Jue cannot be changed by assignment. In fact, in this context,

:= 3 is not a production of ‘'assignation' (8.8). Similarly, the
entifier sin as declared in 10.3.g is a procedure-with-a-real-
rameter-delivering-a-real-identifier (5.h.1. ) and
n := (real x) real : (z -z A 3/6) is slso not an assignation. The
jtialised declaration real ppi(pi) creates a neame possessed by the
eference-to-real-ideﬁtifier ppi, which name refers to the value of

; moreover, another value may be assigned to that neme. }

 The value of a skip is a new instance of some value whose mode is
et obtained in the following steps:

.ep 1: The mode obtained by deleting 'hop' from that notion ending
with 'hop' of which the skip is a terminal production is considered ;
sep 2: If the considered mode begins with 'union of' then some mode
which does not begin with 'union of' and from which the considered
mode is united {2.2.4.1.h} is considered instead; the considered

mode is the mode of the value of the skip.
) A junp {see also 6.2.2.b} does not possess a value.

) The elaboration of a nihil involves no action; its value is a new
nstance of nil {2.2.3.5.a} whose mode is that obtained by deleting
nihil' from that notion ending with 'nihil' of which the nihil is a

erminal production.

{Skips play & role in the Semantics of routine-denotations (5.4.2.ii),
armulas (8.1.2. Step 3) and accompanied-calls (8.7.2. Step k).
oreover, they are useful in a number of progra.umini situations, like e.g.
)  Supplying an actual-parameter (T.k.1.b) or ‘:é-‘uebwo (8.5.1.31)
vwhose value is‘irreleva.nt or is to be calculated later; e.g.
f(3, skip) vhere f does not use its second actual-parameter if the
value of its first actual-parameter is bositive; see also 11.1l.ax ;
i) Supplying a constituent unitary-expression of a collateral-expression,
e.g. [7:] real x7(3.74, gkip, 1.68, skip) ;

8.3.2. continued

iii) as a "dummy" statement (6.2.1 .d) in those rare situations where the
3 03 . 3 3 q
use 6f a completer is inappropriate, e.g. 1 ¢ gkip) in 10.4.% 3
A jump is useful as expression to terminate the elaboration of another

i expression when certain requirements are not met, e.g.

jo bo exit in y := if x = 0 then sqrt(z) else goto exit fi,

f in (j >a | £ 1| §) from 10.2.3.r.

A nihil is useful particularly where structured values are connected to
one snother in that a field of each structured value refers to another
one except for one or more structured values where that field does not
refer to anything at all; the value of such a field must then be nil, e.g
language (14, nil) in the examples of 8.6.1. ~

Since the value of a nihil, nil, is unique, an identity-relation, like
father of father of algol :=: nil

can be used to determine whether a field is nil or not. }

8.4. Slices

8.4.1. Syntax
w

o) REFETY ROWSETY ROWWSETY NONROW slice : REFETY ROWS Rov'ﬁwry NONROW who
sub symbol, ROWS leaving RO indexer, bus symbol.
b) NONREF whole : NONREF primary ; called NONREF primary.
¢) reference to NONREF whole : fitted reference to NONREF primary.
d) row of ROWS leaving row of ROWSETY indexer :
trimmer option, comma symbol, ROWS leaving ROWSETY indexer ;
subscript, comma symbol, ROWS leaving row of ROWSETY indexer.
e) row of ROWS leaving EMPTY indexer :
subscript, comma symbol, ROWS leaving EMPTY indexer.
£) row of leaving row of indexer : trimmer option.
g) row of leaving EMPTY indexer : subscript.
h) trimmer : actual lower bound, up to symbol,
actual upper bound, new lower part option.
i) new lower part : at symbol, new lower bourd.
j) new lower bound : hip fitted Integral formary.
k) subscript : hip fitted integral formary.
1)# trimscript : trimmer option ; subscript.
M\)'*(v\dir«r'. ROWS feaving RO WSETY indexer,



3.4.1. continued

{Exemples:
a) x7[2] ; x2l%, 41 3 z2[2] 3 x1[2:n:7] 5
b) (1, 2, 3) (in (1, 2, 3)[<1)
c) 27 3 =2 3
a) 2:n:1, J 3 s 2:mi1 5

{For primaries see 8.3 and for hip-fitted-formaries see 8.0.1.b. }

{In rule a, 'ROWS' reflects the number of trimscripts in the %1ce,
'ROWNSETY' the number of these which are trimmer-options and 'RO\rﬁEI'Y'
the number of 'row of' not involved in the indexer. In the slices
z2lZ, 41, x2lZ, 2:1, xz2[1], these numbers are (2,0,0), (2,1,0) end (1,0,1)
respectively. Because of rules h and T.1.1.r, 8, 2:3:1 3 2mm 3 32 5 6
and ::2 are trimmers, while rules d snd £ allow trimmers to be omitted. }

8.4,2. Semantics

A slice is elaborated in the following steps:

Step 1: Its constituent whole, and all constituent subscripts, strict-
lower-bounds , strict-upper-bounds and new-lower-bounds of the constituent
indexer of the slice are elaborated collaterally {6.3.2.a} ;

Step 2: That multiple value which is, or is referred to by, the value of
the whole, is considered, a copy is made of its descriptor, and all
the states {2.2.3.3.b} in the copy are set to 1 3

Step 3: The trimscript following the sub-symbol is considered, and a
pointer, "i", is set to 1 3 .

Step 4: If the considered trimscript is not & subscript, then Step 5 is
taken; otherwise, letting "k" stend for its value, if 1. < kS u;, then
the offset in the copy is increased by (k -.li) x d;, the i-th quintuple
is "marked", and Step 6 is taken; otherwise, the further elaboration

is undefined ;

8.4.2. continued

Step 5: The values "1", "u" and "1'" are determined from the considered
trimscript {trimmer-option} as follows:
if the considered trimscript contains a strict-lower-bound (strict-
upper-bound), then 1 (u) is its value, and otherwise 1 (u) is li(ui) ;
if it contains a new-lower-bound then 1' is its value, and otherwise *
1' is 1 3
if nowl, <1 and u < u,, then the offset in the copy is increased by
(1 - li) x 4., and then 1. is replaced by 1' and u; by (1t = 1) + u;
otherwise, the further elaboration is undefined ;
Step 6: If the considered trimscript is followed by a camm-symbol, then
the trimscript following that comma-symbol is considered instead, i is
increased by 1, and Step 4 is taken; otherwise, all quintuples in the
copy which were marked by Step 4 are removed, and Step 7 is taken ;
Step T: If the copy now contains at least one quintuple, then the
multiple value composed of the copy and those elements of the considere
value which it describes and whose mode is that obtained by deleting
'glice! and the initial 'reference to', if any, from that notion ending
with 'slice' of which the slice is a terminal production, is considered
instead; otherwise, the element of the considered value selected by
that index equal to the offset in the copy is considered insteed ;
Step 8: If the value of the whole is a name, then the value of thé slice
is & new instance of the name which refers to the }:onsidered value,

and, otherwise, is a new instance of the considered value itself.

{A trimmer restricts the possible values of a subscript and changes
its notation: first, the value of the subscript is restricted to run
from the value of the strict-lower-bound up to that of the strict-upper-
bound, both given in the old notation; next, all remaining velues of
that subscript are changed by adding the same amount to each of them,
such that the lowest value then equals the value of the new-lower-
bound. Thus, the assignations .

Y7 s n =11 1= 2102 : n 2 K] ; yllnd := 27071 ; 7 :
effect & cyclic permutation of the elements of x7. }

yl



. Generators {And as imagination bodies forth .
The forms of things unknown, the poet's pen

.1. Syntax Turns them to shapes, and gives to airy nothing
A local habitation and a name.

A Midsummer-night's Dream, William Shakespeare.}

- generator local MODE generator 3 nonlocal MODE generator.
local MODE generator : local symbol, nonlocal MODE generator.
nonlocal reference to MODE generator :

actual MODE declarer, MODE initlalisation option.
MODE initialisation :

hip adapted CLOSED MODE expression ; MODE structure pack.
structured with FIELDS and a FIELD structure :

structured with FIELDS structure, comma symbol,

structured with a FIELD structure.

::‘r,u%tui'ed with a MODE named TAG structure :MODE veld,

h§. adapted unitary MODE expression ; MODE structure pack.

{Examples:
locl1 : 31 real (1.2, 3.4, 5.6) ;
person ; compl(1, 0) ; compl(z) ; string("abs") ;
(and in the context of
struct nest = (int a, struct(real b, bool c) d) )
nest(1, (2.3, true)) ;
(z) 3 (1, 0) ;
1, 0 3
73 (2.3, true) }

+2. Semantics

A given structure is ela.bora.te&d in the following steps:

p 1: All constituent eaqmessd.nna.a.nd_stmoums of the given structure
re elaborated collaterall . heve Ch Vaborati a
racture- pack i35 that of :-rfs (%»\Eé:‘lacd‘ %%‘yq’c (::VQ.* ¢ wleberation of

p 2: The values obtained in Step 1 are ma.de, in the given order,

0 be the fields of a new instance of a structured value {2.2.3.2} whose
ode is obtained by deleting 'structure' from that notion ending with

structure' of which the given structure is a terminal production, and

8.5.2. continued -
this structured value is the value of the given structure.

b) A generator is elaborated in the following steps:
Step 1: Its constituent a.Ctual—declarer {7.1.2.c} and initialisation,
if a.ny, are elaborated collaterdly’;ha_&mm

Step 2: If there is an Initialisation, then its value is assigned
{8.8.2.c} to the value {name} of the actual-declarer ;

Step 3: The value of the generator is the value {name} of the actual-
declarer.

¢) The scope {2.2.4.2} of the value of a local-generator is the smalle
range containing that generator; that of a nonlocal-generator is the
program.

{Extension 9.2.a allows
ref real x = loec real
to be wmitien vqplauo‘ $7

real x.

The closed-expression

(ref real xx ; (ref real x = real(pi) ; xx := %) ; xx = pt)
possesses the value true, but the closed-expression

(ref real xx ; (real x(pi) ; 1= ) 3 ax = pi)
possesses en undefined value since the assignation xx := &
in shes—datter cape violates the condition on scopes (8.8. 2.} Step 1
The ¢losed-expression

((ref real xx 3 real x(pi) ; xx := x) = pt)

however, has the value true. }

{Though the value of the offset in the descriptor of a multiple
value is always initially 1, this may be changed by the action of a

Erimseript (s<e v.k.2. Steple, 5).



3.5.2. continued 2

The generator
[-2:3, 1: , 0:4] real
jould result in the name of a multiple value, with undefined elements,

shose descriptor quintuples have the values

i 1. u. 4. S. t.

1 1 1 1 1
1] -2 3 ? 1 1
2 R g5 1 .0
3 0 in 1 1 1

'he fact that t, = 0 means that the second upper bound is virtua.i and
.ts value in the descriptor may be changed by assignment (8.8.2.:). }

,6. Field selections
6. 1. Syntax

) REFETY FIELD selectlon : FIELD selector, of symbol,
REFETY structured with LFIELDSA FIELD RFIELDSETY whole.

{Examples: The following examples are assumed in a range with the
leclarations
struct language = (int age, ref language father) ;
language algol(10, language(14, nil)) ;
Zcmw" e pll = language(4, algol) ;
) age of pll ; father of algol }

{Rule a ensures that the value of the whole has a field selected by
she field-selector in the field-selection (see 7.1.1.e, £, g, h, and the
remarks below T.1.1. and 8.6.2). The use of an identifier which is the
same sequence of symbols as a field-selector in the same range creates
10 ambiguity. ' -

8.6.1. continued

Thus age of algol := age is a (possibly confusing to the human)
assignation if the second occurrence of age is also an a.dapted¥urlitar-y-
integral-expression. } o

8:6.2. Semantics

A field-selection is elaborated in the following steps

Step 1: Its constituent whole is elaborated, and the structured value
which is, or is referred to by, the value of that whole is considered ;

Step 2: If the value of the whole is a name, then the value of the
field-selection is a new instance of the name which refers to that fiel
of the considered structured value selected by the constituent field-
selector; otherwise, it is a new instance of the value which is that
field itself.

{In the examples of 8.6.1, age of algol is a reference-to-integral-
naned-[age]-selection, and, by 8.3.1.a, b, ¢, a reference-to-integral-
primary, but age of pl7 is an integral-named-{agel-selection and an
integral-primary. (Certain pieces of text within a notion have a
prolixity out of proportion to the information they convey.

Thus [age] stands for 'letter-a-letter-g-letter-e' and

[language] is likewise short for 'structured-with-a-integral-named-
[age]-and—a—reference-to—[language]-naneg-[father] ', That certain notions
have infinite length is clear; however, the computer can recoénise them
without full examination (eee—TFle2virt.)

It follows that age of algol may appear as a destination (8.8.1 .b) in
an assigmation'but age of pll may not. Similarly, algol is a reference-
to-[language]-primary but pl? is a [language]-primary and no assigmment
may be made to pl7.

The selection father of pll, hovever, is a reference-to-[languagel-
named-[father]-seiection, and thus a reference-to-[ language l-primary
whose value is the name denoted by algol. It follows that the identity-
relation father of pll :=: algol possesses the value true. If father

of pll is used as a destination in an a.ssiglation,' there is no change in
the name which is a field of the structured value denoted by pl7, but
there may well be a change in the [language] referred to by that neme.



:,v:;vwv
" 8.7.2. continued

8.6.2. continued Step 3: That copy {which is now a closed-clausel} is protected {6.0.2.4} ;

Step 4: The copy as modified by Step 3 is further modified by replacing the
skip-symbols following the equals-synbol following the constituent
fomal-parametersbof the copy {5.4.2.ii} in the textual order by the
constituent actual-parameters of the accampanied-call taken in the .

same order ;

By similar reasoning and because the operators re and im denote routines
(10.2.5.b, c) which deliver values whose mode is 'real' and not 'reference
to-real', re of z := im w is an assignation, but re z := im w is not. }

ks va'ul i€any s fhew that of the N“"‘P‘"‘""\ (“\’)

. i all
8.7. Accompanied ¢ s Step 5: The elaboration of the copy is 1n1tla.ted,L1f this elaboration is

completed or terminated, then the copy is replaced by the accampanied-

8.7.1. Syntaex call before the elsboration of a successor is initiated.

a)* acc ted cail . CLAUSE call. {The expression-call samelson(m, (int j) real : x1[jl) as given in the
b) MODE e ssion cail . ) examples of 8.T.1, is elaborated by first considering (Step 1) the closed-
fitted procedure with PARAMETERS delivering a MODE primary, expression
actual PARAMETERS pack. ((int n = gkip, proc(int) real f = skip) ;
¢) statement call : fitted procedure with PARAMETERS primary, begin long real s(long 0) ;
actual PARAMETERS pack. for i ton do s plus leng £(1) 4 2 ;

short long sqrt(s) end).

{Examples: Supposing that n, f, 8 and ¢ do not occur elsewhere, this closed-
b) samelson(m, (int j) real : x1(j1) (in the scope of expression is protected (Step 3) without further alteration. The actual-
proc sanelson = (int n, proc(int) real f) real : parameters are now inserted (Step L) yielding the closedfxpression
begin long real s(long 0) ; ((int n = m, proe(int) real f = (int j) real : x1LG1)7
oo to w0 piue Leng £(3) 42 3 | bogin tong redl (lomg )
short long eqrit(s) end), . for i ton dos plus leng f(2) 4 2 ;
o) set random(x) ; (see 10.3.%) } short long sqrt(s) end) .
and this closed-expression is elaborated (Step 5). Note that, for the
{For actual-parameters see T.h.1.b and for fitted-primaries see dufation of this elaboration, 7 possesses the same integer as that referred
8.3.1.a. See also unaccompanied-calls, 8.2.1. } » to by the name possessed by m, and f possesses the same routine as that
possessed by.the routine-denotation (int j) real : z1[jl. During the elaboratio
8.7.2. Semantics : . of this and its inMr nested closed-clauses (9.3), the elaboration

of f(i) itself involves the elaboration of the closed-expression
An accompanied-call is elaborated in the following steps: ((int § = 2) ; «1(§)), and, within this inner closed-expression, the first
Step 1: Tts constituent fitted-primary is elaborated and a copy is made occurrence of j possesses the same integer as that referred to by the name
of {the routine which is} its value ; ,  possessed bty <. } : :

Step 2: The accompanied-call is replaced by that copy ;



8.8. Assignations
8.8.1. Syntax

a) MODE assignation :

reference to MODE destination, becomes symbol, MODE source.
b) reference to MODE destination : peeled reference to MODE formary.
c) MODE source : hip adapted unitary MODE expression.

{Examples:

a) x =0 3 x :=y; & = random ; XX = X 3 225 xx =.1.2 3
2I[2] =yl = (2 =4 11| 0); (random < .5 | = |\ y) =1

xory :=3.41}

{For peeled-formaries see 8.0.1.b and for hip-adapted-unitary-
expressions see 8.0.1.a }

8.8.2. Semantics

a) When a given instance of a value is superseded by another instance of
a value, then the name which refers to the given instance is caused to
refer to that other instance, and, moreover, each name which refers to an
instance of a multiple or structured value of which the given instance is
& component {2.2.2.k} is caused to refer to the instance of the multiple
or structured value which is established by replacing that component by

that other instance.

b) When an element (a field) of a given multiple (structured) value is
superseded by another instance of a value, then the mode of the thereby
established multiple (structured) value is that of the given value.

c¢) A value is assigned to a name in the following steps:

Step 1: If the given value does not réfer to an element or subvalue of a
multiple value having one or more states equal to zero {2.2.3.3.Db},
if the outer scope of the given nage. is not larger than the inner
scope o;_;£Z§EI§ZZ YE}ES'{z.a.h.2.c, d}, and if the given name is not
nil, then Step 2 is taken; {otherwise, the further elaboration is
undefined ; } ‘ »

Step 2: The value referred to by the given name is considered; if the
mode of the given name does not begin with 'reference to union of' and
the considered value is a multiple value or a structured value, then
Step 3 is teken; otherwise, the considered value is superseded by a new

instence of the given value and the assignment ie—coumplete.l

has boow occgmpﬁskfaj

8.8.2. continued

Step 3: If the considered value is a structured value, then Step 5 is
teken; otherwise, applying the notation of 2.2.3.3.b to its descriptor,
then for i = 1, .ea, n, if s; =0 (ti’= 0), then 1, (ui) is set to the
value of the i-th lower bound (i-th upper bound) in the descriptor of
the given value; moreover, for i = n, n-1, ..., 2, the stride di-1 is
set to (ui-li+1) x d;3 finally, if some s; = 0or t; = 0, then the
descriptor of the considered value, as modified above, is made to be

the descriptor of-a new instance of a multiple value which is of the

. is mode €0 be referrad €0 by Fhe givenm name a
same mode as the considered value, and this new instanceljs conéidé;ed

instead ;

Step 4: If for all i, i =1, ..., n the bound 1; (ui) in the descriptor of )
the considered value, as possibly modified in Step 3, is equal to 1, (ui)
in the descriptor of the given value, then Step 5 is taken {; otherwise,

the further elaboration is undefined} ;

. given esiy ned finanorder whichis tefF

Step 5: Fach element (fle%g) of the cansidewed value is
o

undebin S tv the name ve trring considayed
. Sday

::::::::EEf.Effhggisii?gaejng element (field) of the gauen va%ue and the
Fed— tePimeded
d) An assignation is elaborated in the following steps;
Step 1: Its constituent source and destination are elaborated collaterally
{6.3.2.8} ; '
Step 2: The value of the source is assigned to the value {namel} of the
destination ;

Step 3: The value of the asslignation is a new instance of the value of the
source,

{Observe that (x, y) := (1.2, 3.4) is not an assignation, since (x, y/)
is not a destination; indeed, the mode of the value of a collateral-

_expression (6.3.1.c) does not begin with 'reference to' but with 'row of'. }

8.9. Conformity relations {I would to God they would either

conform, or be more wise, and not
" be catched!
8.9.1. Syntax Diary, 7 Aug. 1664, Samuel Pepys.}
a) boolean conformity relation :

peeled reference to IMODE formary, conformity relator, RMODE formary.
b) conformity relator :

conforms to symbol ; conforms to amd becomes symbol.



9.1. continued

{Examples:
ec :: e (see 11.11.q) ; ev 1:= e (see 11.11.7)
11y s:= )

{For peeled-formaries and formaries see 8.0.1.b. }

9.2. Semantics

conformity-relation is elaborated in the following steps:

ep 1: Its constituent peeled-formary and formary are elaborated
collaterally {6.3.2.a} and the value of that formary is considered ;
ep 2: If the mode of the value of the peeled-formary is 'reference to!
followed by a mode which is or is united from {2.2.4.1.h} the mode of
the considered velue, then the value of the conformity-relation is true
and Step b is taken; otherwise, Step 3 is taken ;

ep 3: If the considered value refers to another value, then this other
velue is considered instead and Step 2 is taken; otherwise, the value
of the conformity-relation is false and Step 4 is taken ;

.ep 4: If the constituent conformity-relator is a conforms-to-and-
becomes-symbol and the value of the conformity-relation is true, then
the considered velue is assigned {8.8.2.c} to the value of the peeled-
formary.

{Observe that if the cénsidered value is an integer and the mode of the
ue of the peeled-formary is 'reference to' followed by a mode which is
> is united from the mode 'real' but not from 'integral', then the value
* the conformity-relation is false. Thus, in contrast with the assignation,

y automatic widening from integral to real takes place. }
,10. Identity relations
,10.1. Syntax

) boolean identity relation : peeled reference to MODE formary,
identity relator, hip peeled reference to MODE formary.
) 1dentity relator : is symboi 3 1s not symbol.

.10.1. continued

{Examples:
Y xx :=: yy 3 val xx =t xory
) :=: 3 :#: )

{For peeled-formaries and hip-peeled-formaries see 8.0.1.b. }

.10.2. Semantics

identity-relation is elaborated in the following steps:

tep 1: Its constituent peeled-formary and hip-peeled-formary are elabore
collaterally {6.3.2.a} ;

teps2: If the cons;tituent identity-relator is an is-symbol (is-not-symbc
then the value of the identity-relation is true (false) if the values

{nemes} obtained in Step 1 are the same and false (true) otherwise.

{Assuming the assignation xx := yy := &, the value of the identity-
elation xx :=: yy is false because xx and yy, though of the same mode,
not possess the same name. The value of the iaentity-relation ‘
al xx =3 T or Yy has a 1/2 probability of being true bécause the value
ssessed by val val xx is ‘the name possessed by x, and the routine possessed
x or y (see 1.3), when elaborated, yields either the name possessed
y & or, with equal probability, the name possessed by y. In the identit;
lation, the programmer is usually asking a specific question concerning
ames and thus the level of reference is of crucial importance. Since no
utomatic depressing of the formaries is provided, it must be explicitly
pecified, if necessary, through the use of val or an equivalent device.
us, xx :=: & is not an identity-relation but val ax :=: x and
22 := xx) :=: x ere. On the other hand, unaccompanied procedures will b
alled automatically so that x :=: x or y is also an identity-relation.
bserve that the value of the formula 7. = 2 is false, whereas 7 :=: 2
is not an identity-relation, since the values of its formaries are not
ames. Also,

fedsdf :=: fsdf
8 not an identity-relation, whereas

fadsdf = f&df.
is a formula, but involves an operation which is not included in the
standard-declarations. }



9. Extensions

a) An extension is the insertion of a comment between two symbols or the
replacement of a certain sequence of symbols, possibly satisfying certain

12 1eb
I.W’e"‘ha“s, by another sequence of symbols.

b) No extension may be performed within a comment {3.0.9.b} or a row-of'-

character-denotation {5.3}.

fven N
¢) Some extensions are dgee&be& in the representation language, except

that

A stands for a unitary-expression {Chapter 8},

B for a unitary-expression,

¢, and Cy for unitary-c_:lauses {6.2.1.a, 8}, _
D for the standard-declarations {2.1.b, 10} if the extension is performed

outside the standard-declarations and otherwise for the empty sequence
of symbols,

' E for a serial-expression {6.1.1.b},

F for a unitary-expression,

G for two or more unitary-clauses separated by comma-symbols,

H for a declarer (7.1},

I, J, K and L for identifiers {4.1},

L for zero or more long-symbols,

M for an identifier,

¥ for an indication {4.2}, ..

O for zero or one identifiers,

P for a tall {T.1.1.w, x, z},

@ for a choice-clause {6.5.1.b},

R for a routine-denotation {5.4},

S for a unitary-statement {6.2.1.a},

T for a unitary-expression,

U for zero or one virtual-declarers {7.1.1.b}
V for a virtual-declarer,

W for a unitary-expression, and Towers

Z for a formal-declarer {7.1.1.b} all of whose formal-row-of-rewer=cpticns
{7.1.1 .;} are empty.

\

d) Eack vepresentation of o symbof appeaYing jn’ Sections 4.1 up to W.S'Na,
\'s{ \'eflucid b\/ any dé‘\-er YQPT'QSQV\‘“Q(.’MV\'(F m\y/ o€ the sam-e
Symbol .

{A source of innocent merriment.
Mikado, W.S. Gilbert.}

9.1. Comments

A comment {3.0.9.b} may be inserted between any two symbols {but see 9.b.}.

{e.g. (m>n | m | n ) may be weitben veplacd by
(m>n | me the larger of the two ¢ | n). } .
9.2. Contracted declarastions »
a) ref ZI = loc H where Z and H specify the same mode {T7.1.2.al may be
replaced by HI. veplacad by
{e.g. ref real x = loc real may be wwitiem real x and

laced b o
ref bool p = loc bool(true) mey be itsda bool pltrue). }

b) mode N = struct may be replaced by struct N = and mode N = union may

be replaced by union N = . weptaced by
{e.g. mode compl = struct(real re, im) (see also 9.2.c) may be wriiien

atruct compl = (real re, im). }

¢) If a given unitary-declaration (formal-parameter {5.4.1.e}, field-
declarator {7.1.1.g}) and another unitary-declaration (formal-parameter,
field-declarator) following s comma-symbol following the given unitary-
declaration (formal-parameter, field-declarator) both begin with an
occurrence of the mode-symbol, of the structure-symbol, of the uniop—of—
symbol, of the priority-symbol, of the operation-symbol, of one same actual-
declarer, or of one same formal-declarer, then the second of these
occurrences may be omitted. vephacad by

{e.g. real =, real y(1.2) maz*sﬁ‘ﬁtenﬂl_ x, y(7.2),.but -
real x, real y = 1.2 may not be weitter real z, y = 1.2, since the first
6ccurrerice of reql is an actual-declarer whereas the second is a formal-
declarer.
Note also that mode b = bool, mode r = real may be ur-it-‘ben-v*f"“"l by

mode b = bool, r = real, ete. }

d) If a collateral-declaration {6.3.1 .a;} does not begin with a parallel-
synbol, is not a constituent unitary-declaration of another collateral-
declaration, none of its constituent unitary-declarations is a collateral-
declaration, and only its first constituent unitary-declaration {after
application of 9.2.c} beéins with an occurrence of a mode-symbol,
structure-symbol, union-of-symbol, priority-symbol, operation-symbol or
declarer, then its first opsl;l;gxnbol and last close-symbol may be omitted.
{e.g. (real x, y, 3) may be Mrﬂx, Ys 8¢ }



9.2. continued

e) proc PT = R may be replaced by proc I = R.
f) op PN = R may be replaced by op N = R,
g) proc PO(R) may be replaced by proec O(R).

{e.g. proc(ref int) iner = (ref int 2) : (¢ := 7 + 1) may be
proec iner = (ref int i) : (i := 7 + 1), veplaad by
op(ref int) int deer = (ref int ©) int : (i := © - 1) may be smidbon—
op deer = (ref int 2) int : ( := 4 - 1) and

veplated by
e

proc(real) int p((real x) int : (round x)), obtained from
ref proe(real) 3_7_1_‘1519) =b_Z_c_J_g proc(real) int((real x) int : (round x))
by 9.2.a, may Be ' weidban proe p((real z) int : (round x)). }

9.3. Repetitive statements

a) The unitary-statement
ZD_e_gl'Q(_’Il_an(F),_'_LZz_tK=B, L=T);
M.‘lﬁfD(K>O|JSL|:K<0IJ2LIt‘ru_e)zlleﬁ
imtI=J; (W|S; (D i=dJ + K) ; goto M)
Iz
nd
vhere J, K, L and M do not occur in D, Wor S, and where I differs from
J and K, maybereplacedbyfgf_IMFéﬂBETMe_Wg_o_S s
and if, moreover, I does not occur in W or S, then for I from may be
replaced by from.

b) The unitary-statement

begin(int J(F), int K = B) ;

M:(intI=J; (F/IS;(DJ:=J+K);go_t_q_M))

f.’l_d 3
where J, K and M do not occur in D, Wor S, and where I differs from J
and X, may be replaced byﬁo_rIﬂo_rgFészﬁi_ZgW_c_igS s
and if, moreover, I does not occur in W or 5, then for I from may be
replaced by from.

c¢) from 1 by may be replaced by by.
d) by 7 to may be replaced by to, end by 1 while may be replaced by while.

e) while true do may be replaced by do.
—— ——T — - v(p‘ﬂ(-ﬂ\ 57
{e.g. for 7 f{om7_12372nwhiletruegx = x + a may be witien

tondox :i=zx+a.

9.3. continued
Note that to 0 do S é.nd while false do 8 do not cause S to be elaborated
at all, whereas do S causes S to be elaborated repeatedly until it is
terminated or interrupted. } .
9.4. Contracted conditional clauses {The flowers that bloom in the spring,
Tra la,
Have nothing to do with the case.
Mikado, W.S. Gilbert.

a) else if @ fi fi may be replaced by elsf @ fi and
then if @ fi fi may be replaced by thef @ fi. ,
{;;:ﬁ p then pmlnqeton else if q then grenoble else zandpoort'ﬁﬁ
hay be witien veplaced by
if p then princeton
elsf q then gremoble else zandvoort fi
or (p | princeton |: q | grenoble | zandvoort).

Many more examples are given in 10.5. }

b) (int I =A; if DI =1 then C, elsf D(I = 2 | true) then C, fi),

.where I does not occur in C'7, 02 or D, may be replaced by

case A in 07, 02 esac.
e) (int I =A; if DI = 1 then C, else case(DI - 1) in G esac fi),
vhere I does not occur in 6'7, D or G, may be replaced by

case A in 07, G esac.

{Examples of the use of such "case" clauses are given 11.11.w, ap. }
9.5. Complex values

val(L real I = A, J =B ; (DL compl(I, J))),
vhere I and J do not occur in D, may be replaced by



10. Standard declarations

a) A "standard declaration" is one of the constituent declarations of the
standard-declarations {2.1.b} {; it is either an "environment enquiry"
supplying information concerning a specific property of the implementation
(2.3.¢), a "standard priority" or "standard operation", a "standard
mathematical constant or function", a "synchronization operetion" or a

"transput declaration"} .

b) A representation of the standard-declarations is obtained by altering

each form in 10.1, 10.2, 10.3, 10.4 and 10.5 in the following steps:

Step 1: Each sequence of symbols between f and $ in a given form is
altered in the following steps:

Step 1.1: If D occurs in the given sequence of symbols, then the given
sequence is replaced by a chain of a sufficient number of sequences
separated by comma-symbols; the first new sequence is a copy of the
given sequence in which copy D is deleted; the n-th new sequence,

n > 1, is a copy of the given sequence in which copy D is replaced
by a sub-symbol followed by n-2 comma-symbols followed by a bus-
symbol ;

Step 1.2: If, in the given sequence of symbols, as possibly modified

in step 1.1, L int (L real or L compl) occurs, then that sequence
is replaced by a chain of int lengths {10.1.a} (real lengths {10.1.c})
sequences separated by comma-symbols, the n-th new sequence being a
copy of the given sequence in which copy each occurrence of L(L)
has been replaced by (n-1) times long(long) ;
Step 2: Each occurrence of ¢ and % in a given form, as possibly
modified in Step 1, is deleted ;
Step 3: If, in a given form, as possibly modified' in-Steps 1 and 2,
L int (L real or L compl, L bits or L abs, both L int and L real or
both L int and L compl) occurs, then the form is replaced by a sequence
of int lengths {10.1.a} (real lengths {18 «1.c}, bits widthe {10.1.f},
the minimum of int lengths and reql Zenghts new forms; the n-th new

form is a copy of the given form in which copy each occurrence of
L(L, K, S) is replaced by (n-1) times long(long, leng, short) ; {
Step L: If P occurs in e given form, as possibly modified or made in the

Steps above, then the form is replaced by four new forms obtained by

replacing P consistently throughout the form by either - or + or x or / ; !

10. continued

step 5: If @ occurs in a given form, as possibly modified or made in
the Steps above, then the form is replaced by four new forms obtained
by replacing @ consistently throughout the form by either minue or

plug or timeg or over ;
Step 6: If R occurs in a given form, as possibly modified or made in the

Steps above, then the form is replaced by six new forms obtained by
replacing R consistently throughout the form by either < or < or = or
#orzor > ;

Step T: Each occurrence of F in any form, as possibly modified or made
in the Steps above, is replaced by a representation of one same
terminal production .of a terminal production of 'ALEPH' {1.2.5.4,

\ 5,5.1.6.a} ;

Step 8: If, in some form, as possibly modified or made in the Steps
above, % occurs followed by the representation of an identifier (field-
selector, indication), then that occurrence of % is deleted and each
occurrence of the representation of that identifier (field-selector,
indication) in any form is replaced by the representation of one same
identifier (field-selector, indication) which does not occur elsewhere
in a form, and Step 8 is taken ;

Step 9: If a representation of a comment occurs in any form, as possibly
modified or made in the Steps above, then this representation is
replaced by a representation of an actual-declarer or closed-clause
suggested by the comment ;

Step 10: If, in any form, as possibly modified or made in the Steps
above, a representation of a routine-denotation occurs whose elaboratic
involves the manipulation of real numbers, then this denotation may
be replaced by any other denotation whose ela.bo‘r:a.ft(}%nmix:ee: :ﬁproxlmatelg
the same effect {The degree of approximation is net-defimed in this
Report (see also 2.2.3.1.c).} ;

Step 11: The standard-declarations are that serial-declaration followed
by & go-on-symbol whose representation is the same as the sequence of
all the forms, as possibly modified or made in the Steps above.

{The declarations in this Chapter are intended to describe their
effect clearly. The effect may very well be obtained by a more efficient
method. }



10.1. Environment enquiries

N

10.2.2. continued

a) int int lengths = c the number of different lengths of integers e ; (L int a, b) bobl : (b<sal;

e)op 2=
b) L int L max int = ¢ the largest L integral value ¢ ; £) op > = (L int a, b) bool : (b < al;
c) int real lengths = | g) op - = (Lint a, b) Lint :
¢ the number of different lengths of real numbers c ; ¢ the value of 'a' minue that of 'b' ¢ ;
d) L real L max real = c the largest L real value ¢ ; h)_02-=(£,7_:_7‘£a)£l"i" (Lo - a) ; d

e) L real L small real = ¢ the smallest L real value such that both
L1 + L small real > L1 and L1 - L emall real < L1 ¢ ;
) int bits widths =
¢ the number of different widths of standard bit rows ¢ ;
g) int L bits width = sfrerrbads ) see L bibs
¢ the number of bits in a standard L bit row, g—-_e—{10.2.6.a}£/‘
h) op abs = (char a) int :

5_)22+=(§_l‘@:_a, b) Lint : (a --Db);

Hep+=(Linta Lint:a;

k) op abs = (Linta) Lint : (@<L0 | -alal;

1) op x = (L int a, b) L int : (L int 8(L0), i(abe b) ;
while i 2 L1 do(e :==s8 +a; ¢t =41 -L1) 5 (b<LO| - |8));

m) op * = (L int a, b) L int : ‘
(b # L0 | L int q(L0), r(abs a) ;
w;ile(r i=r -abg b) 2 L0 doq :=q +Ll;
-(;—:_QOAbZQOVaZQOAb<£0l-qlq));

n)gp ti= (Linta, b) Lint : (adatblxb);

o) op / = (L int a, b) L real : (L real (a) / L real (b)) ;

p) op A = (L int a, int b) L int :
(b 20| Lint p(Ll) ; tobdop :=pxa;pl;

e the integral equivalent of the character 'a' ¢ ;
i) op repr = (int a) char :
¢ that character 'x', if it exists, for which gbs x = a ¢ ;

10.2. Standerd priorities and operations

10.2.0. Stendard priorities

a) priority minus = 1, plus = 1, times = 1, over = 1, modb = 1, prus = 1, q) op leng = (L int a) long L int : ¢ the lomg L integral value equivalen
vV=23 A=3, ==4_,#=4_, <=§, <=5 2=25, >=5, == §, tothevalueof ralg’.

r) op short = (long L int a) L int : ¢ the L integral value, if it exists,
equivalent to the value of 'a' ¢ ;

8) op odd = (L int a) bool : (abs a +: L2 = L1) ;

t)opsign=(Linta) int : (@a>L0 | T |:a<L0|-110);

+=6,x=7,+=7,2:=7,/=7,4A=8;
10.2.1. Operations on boolean operands

a) op vV = (bool a, b) bool : (a | true | b) ;

) op A = (bool a, b) bool : (a | b | false) ;

¢) op —= (bool a) bool : (a | false | true) ; 10.2.3. Operations on real operands

d) op = = (bool a, b) bool : ((a Ab) v (ma A= b)) ; a) op < = (L real a, b)go_t_al:gtmeifthevalue\of 'a' i8
e) op # = (bool a, b) bool : (—(a =Db)) ; smaller than that of 'b' and false otherwise ¢ ;

f) op abs = (bool a) int : (a | 110); b) op < = (L real a, b) bool : (—(b < a)) ;
¢) op == (L real a, b) bool : (asbabz=al;
d) op # = (L real a, b) bool : (—(a =Db)) ;

e) op 2 = (L real a, b) bool : (b < a) ;

£) op > = (L real a, b) bool : (b < a) ;

10.2.2. Operations on integral operands

8) op < = (L int a, b) bool : ¢ true if the value of 'a' is emaller than
that of 'b' and false otherwise ¢ ; f
b) op < = (L int a, b) bool : (—(b < a)) ;

g) op - = (L real a, b) L real : ¢ the value of 'a' minus that of ' e
c)op == (Lint a, b) bool : (a<b Abs<al); {223—1c}

d) op ¥ = (L int a, b) bool : (—(a =1b)) ; h) op - = (L real a) L real : (L0 - a) ;
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10.2.3. continued

i) op + = (L real a, b) L real : (a - =b) ;
§)op += (Lreal a) L real : a
k) op abs = (L real a) L real :
1) op x = (L real a, b) L real :
{2.2.3.1.c}
m) op / = (L real a, b) L real :
'p! e ; {2.2.3.1.c}
n) op leng = (5 real a) long I real :
¢ the long L real value equivalent to the value of 'a' ¢ ;

(a<LO | =al a;
¢ the value of 'a' times that of 'b'

¢ the value of 'a' divided by that of

o) op short = (long L real a) L real : c the L real value, if it
exigts, equivalent to the value of 'a' e ;

(L real a) L int
equivalent to a L real value differing by not more than one-half
from the value of 'a' ¢ ;

a) op sign = (L real a) int :

p) op round = : ¢ a L integral value, if one existe,

(@a>L0 | 7T |:a<Lo| <110 ;
r) op entier = (L real a) L int : (L int J(LO) ;
J+Ll;(Gsaleld-L1)I

(jsale:g:=

Ffe:dgw=dg-Lli;(G>alfl gl
10.2.4. Operations on arithmetic operands
a) op P= (L real a, L int b) L real : (a P L real(db)) ;
b) op P = (L int a, L real b) L real : (L real(a) P b) ;
c) op R = (L real a, L int b) bool : (a R L real(d)) ;
d) op B = (L int a, L real b) bool : (L real(a) R D) ;
e) op A = (L real a, int b) L real : (L real p(Ll1) ;

toabe bdop =pxa; (b201pl|Ll/p);

10.2.5. Complex structures and associated operations

a) struct L compl =
b) op re = (L compl a) L real :
c) op im = (L compl a) L real

(L real re, im) ;
re of a ;
simofas;

L sqrt(re a A 2 + tma 4 2) ;

a) op abs = (L compl a) L real :

e) op conj = (L compl a) L compl : (re a | -imal) ;

f) op = = (L compl a, b) bool : (re a =re b anima=1imb) ;
g) op # = (L eompl a, b) bool : (—(a=Db)) ;

h) op + = (L compl a) L compl : a

10.2.5. continued

(—ggél—}'_rga);
(L compl a, b) L compl :
x) op - = (L compl a, b) L compl :
1) g * = (& compl a, b) L compl. :
(reaxreb-imaximb lreaximb+inaxreb) ;
m) op / = (L compl a, b) L compl :
(L real d = re(b x conj b) ;
(ren/d|imn/ d)) ;
n) op leng = (L compl a) long L compl :
o) op short = (long L compl a) L compl :
p) op B = (L compl a, L int b) L compl :
q) op P = (L compl a, L real b) L compl :

i) op = = (L compl a) L compl :

i)op +

(re a + re b | ima + im b) ;

(rea-reb |ima-inb) ;

Lecompl n=axconjb;

(leng re a | leng im a) ;
(short re a | short im a) ;

(a P L compl(b)) ;

(a P L compl(b)) ;
(L compl(a) P b) ; -

(L int a, L compl b) L compl :

2
I
vl
"

P

8) op P = (L real a, L compl b) L compl : (L compl(a) P D) ; 2
t) op 4 = (L compl a, int b) L compl : (L compl p(L1) ; e
toabe bdop:=pxas; b201Iipl| Ll /p); >
10.2.6. Bit rows and associated operations : —‘
a) mode L. bits = [1 : L bits width] bool ; {10.1.g} . ‘E“
b) op = = ([1 : int n] bool a, b) bool : 7
(for i to n do(a[i] # D[71 | 1) ; true. 1 : false) ; i‘:
c) op # = ([] bool a, b) bool : (—(a = b)) ; o
) op v = (L1 : int n] bool a, b) (] bool : (L7 : n) bool e ; Al
for © to n do eli] :=al<l v Dl4] 5 ) ; ~.
) op A = ([7 : int n] bool a, b) [1 bool : (L7 : n] bool e ; 3
for i ton do elil = alil A Bl<l 5 o) 5 -
) op < = (L1 bool a, b) bool :((a Vv B)=b) ; ‘El'
Y op 2 = ([] bool a, b) bool : (b < a) . ; = fJ‘

(L7 : Znt n) bool a, int b) [1 bool : (L1 : nl bool c(a)b—'
>t —rmb—mI. ;. for ¢ from 2 to n do
el - 7] := el2] ; elnl := false)jwin~

B
B
>
L}

L bits w-‘“’"_l‘]
(L int e(L0) ;€ex i );,,,_(_*kabsc[t]/ C)

J) op bin = (L int a) L bits :ifangthen_I_,QL_t_aa-(a)
for © to L bits width dofe—re—smp—i—s—otid

; L bite ctd
APV 7 T2V T IR

(cEiJ:=9_41|>;b:=b’-:- L), c £



10.2.7. Operations on character operands 10.2.9. continued

&) op < = (char a, b) bool : (abs a < abs b) ; {10.1.h} n) op times = (ref L real a, L real b) L real : (a :=a x b) ;

b) op < = (char a, b) bool : (— (b < a)) ; i) op times = (ref L campl a, L compl b) L compl : (a :=a x b) ;
c)gg==(chara,b)bool:(asbAbsa); -' j) op over = (ref L int a, L int b) L int : (a :=a ¢ b) ;

d) op # = (char a, b) bool : (— (a = b)) ; k) op modb = (ref L int a, L int b) L int : (a :=a +: b) ;
e)_022=(chara,b)bool:(b5a); 1) op over = (ref L real a, L real b) L real : (a :=a [/ b) ; X
f)_qg>=(chara,b)bool:(b<a); m) op over = (ref L compl a, L compl b) L compl : (a :=a / b) ; '
10.2.8. String mode and associated operations n) op 4= (r_efé_real a L Z'-YE- b) L ______reaZ N Qg___real(b)) s

o) op @ = (ref L compl a, L int b) L compl : (a @ L compl(b)) ;
p) op @ = (ref L compl a, L real b) L compl : (a Q L compl(b)) ;

q) op plus = (ref string a, string b) ref string : (a :=a+b;a};
r) op prus = (ref string a, string b) ref string : (a :=b +a ; a) ;

a)Ln_g_c_Z_gstrim=[7:]g_hg_r_;

(L7 : int m] ehar a, L7 : int nl char b) bool :
(int (1) ;int p=(m<n|m|n) ; bool ¢ ;
(p<7in27le:(c=aldl=blil|: (i:=3+1) sp|e;

b)22<=

a+b;al;

(el m<n|alzl < bl£1))) ;

8) op plus = (ref string a,

char b) ref string : (a :

t) op prus = (ref string a,

char b) ref string : (a :

b+aj; a;

c¢) op < = (string a, b) bool : (— (b <a)) ;

a) op == (strigg a, b) bool : (a<bAbcs<a); 10.3. Standard mathematical constants and functions

e) op # = (string a, b) bool : (—(a=1b)) ; a) L real L pi = ¢ a L real value close to n ; see Math. of Comp.
£) op 2 = (string a, b) bool : (b < a) ; v. 16, 1962, pp. 80-99 ¢ ;
g)_o_g>=(stringa,b)_b_go_l:(b<a); a..'iﬁ‘i‘li(b) b) proc L eqrt = (L real x) L real : ¢ if x 2 0, a L real value

h) op R = ([1 : int n] char a, char b) bool : (#m=d—imatt 1 Bb) ; elose to the square root of 'x' ¢ ;

i) op R = (char a, L7 : int nl char b) bool :,(W} 3 ¢) proe L exp = (L real x) L real : ¢ a L real value, if one exists,
j)op +=(L1: int ml char a, [1 : int n] char g = cloge to the exponmential function of 'z' e

(L7 :m+ nl char ¢ ; d) proc L In = (L real x) L real : ¢ a L real value, if one exists,

ell :ml:=a;elm+ 7 :m+n:17]1 :=b; e ; close to the natural logarithm of 'x' ¢ ;
k) op + = (string a, char b) string : (string s = b ;. a + 8) ; e) proc L cos = (L real x) L real : ¢ a L real value close to the
1) op + = (char a, string b) string : (string s = a ; e + b) ; ~ cosine of 'z’ e ;

{The operation defined in b implies that if "q"[7] < "'"M17], then £) M.L avceos = (L real x) Lreal : ¢ ifabs x < L1, a L real

R P N S O N N . Mabr < "b”.' } value close to the inverse cosine of 'x',‘go < L arecos(x) <Lpte;

g) proc L sin = (L
8ine of 'z' ¢ ;

h) proec L arcsin =
close to the inverse sine of 'xz', abs L arcsin(x) <Lpi [/ L2 e ;

real x) L real : ¢ a L real value cloge to the

10.2.9. Operations combined with assignations

(L real x) L real : ¢ if abs x < L1, a L real value

a) op minus = (ref L int a, L int b) Lint : (a :=

(ref L real a, L real b) L real : (a :=

a->b);
a=->b);

b) op minug =

c)_ggm'nus=(geigcompla,gcomplb)gcompl:(a:=a-b); i)gm_thm:(g_reaZx)éreaZ: .

4) op plus = (ref L int a, Lint b) Lint : (a :=a+b) ; 2 a L real value, if one exists, close to the tangent of 'z’ ¢ ;
e) op plus = (ref L real a, L real b) L real : (a :=a + b) ; 3) proc I arotan = (L real z) L real :

£) op plus = (ref L compl a, L compl b) L compl : (a :=a+b) ; ¢ a L real value close to the inverse tangent of 'z’',

g) op times = (ref L int a, L int b) L int : (a := a x b) ; @bs L aretan(z) <Lpi /L2 ¢ ;



10.3. continued

k) proc L random = L real expr ¢ the next pseudo-random & real value
from a uniformly distributed sequence on the interval [Lo, L1) e ;

1) proc L set random = (L real x) : (c the next call of L random is
made to deliver the value of 'x' ¢ 5 L random) ;

10.L. Synchronization operations

a) op down = (ref int dijkstra) :
dijkstra minus 1 ;

(do elem(if dijkstra = 1 then

1 elge ¢ if the closed-statement replacing this
comment ig contained in a unitary-phrase which is a constituent
unitary-phrase of the smallest collateral-phrase, if any, beginning
with a parallel-symbol and containing this closed-statement, then

the elaboration of that unitary-phrase is halted {6.0.2.c} s otherwis
the further elaboration is undefined e fl) s 1 : gkip) ;

b) op up = (ref int dijketra) : elem(dijkstra plus 1 ; ¢ the elaboration
i8 resumed of all phrases whose elaboration is not terminated but
18 halted because the name possessed by 'dijkstra' referred to a
value smaller than one el ;

{For insight into the use of down and up, see E.W. Dijkstra,
Cooperating Sequential Processes, EWD123, Tech. Univ. Eindhoven, 1965. }

10.5. Transput declarations {"So it does!" said Pooh. "It goes in!"
"So it does!" said Piglet. "And it comes out!
"Doesn't it? said Eeyore. "It goes in
and out like anything."

Winnie-the-Pooh, A.A. Milt.1e '

10.5.0. Transput modes and straightening
10.5.0.1. Transput modes

e) mode % simplout = union(t L int %, ¥ L real +, t+ L compl 4,
bool, char, string) ;

b) mode % outtype =union(t DL int +, + D L real %, ¢ D bool 4,

t D char t, ¢ D outstruct %) ;

c) mode % outstruct = ¢ @ a‘_cmls;c‘if‘c‘_‘lqper sgfftfy&\n{ a mode united
from {2.2.4.1.h} all modes Lstructured From {2.2. b, 1.,]} only modes
from which the mode specified by outtype is united ¢ ;

2) mode % intype = wnion(t ref D L int 4, ¥ ref D L real 4,
¥ ref D bool t, t ref D char +, ¥ ref D outstruct %) ;

e) mode % tamrof = struct (string F) ; {See the remarks under 5.5.1.6.}

10.5.0.2. Straightening

a) op straightout =

(outtype x) [] simplout :
¢ the result of "straightening" 'x' ¢ ;

b) op straightin = (intype x) [1 ref simplout :
¢ the result of straightening 'z' ¢ ;

The result of straightening a given value is obtained in the following

steps:

Step 1: If the given value is (refers to) a value from whose mode that
specified by eimplout is united, then the result is a new instance of
& multiple value composed of a descriptor (1, 1, 1, 1, 1) and the (the
naine of the)given value as its only element, and Step 4 is taken H

Step 2: If the given value is (refers to) a multiple value, then, letting
n stand for the number of elements of the given velue, and ¥; for the
result of straightening its i-th element, Step 3 is taken; otherwise,
letting n stand for the number of fields of the (of the value referred
to by ihe) given value, and y; for the result of straightening its i-th
field, Step 3 is taken ;



10.5.0.2. continued

Step 3: If the given value is not (is) a name, then, letting m. stand for

the number of elements of Yo the result is a new instance of a multiple j

value composed of a descriptor (1, m o+ ...+ m s 1, 1, 1) and elementsg

the 1-th of which, where 1 = m

gt e tm o+, is the (is the name

referring to the) j-th element of ¥ for k = 1, ..., n and J =1y eees nf
Step 4: If the given value is not (is) a name, then the mode of the result |

is 'row of' ('row of reference to') followed by the mode specified by

simplout.
10.5.1. Channels and files

{"Channels", "backfiles" and files model the transput devices of the
physical machine used in the implementation.
A channel corresponds to a device, e.g. a card reader or punch, a
magnetic drum or disc, a piece of core memory, & tape unit or even a
set-up in nuclear physics the results of which are collected by the
computer. A channel has ¢ertain properties (10.5.1.1.4 : 10.5.1.1.m)s
Some devices may be seen as channels with properties in more than one
way. The choice m;de in an implementation is a matter for individual

taste. Some possible choices are given in Table I.

All information on a giv?¥ channel is to be found in a number of
backfiles. A backfile (10.5.1kb) comprises e-referenee-te a three-
dimensional array of integers (bytes of information), the book of the
backfile, indexed by page, line and char; the lower bounds of the book
are all one and the upper bounds are the maxpage, maxline and maxchar
of the channel; furthermore, the backfile comprises the position of the
"end of file", i.e. the page nmumber, line number and character number
up to which the backfile is filled with information.

On & given channel, a certain maximum number {(10.5.1.1.m) of files
(10.5.1.2.a) may be "opened" at any stage of the elaboration of the
program. A file contains a reference to a backfile, to & current page
number, line number and character number, and to the channel on which

it has been opened.

After the elaboration of the declaration of nextbfile (10.5.1.1.c),

all backfiles are part of the chains of backfiles referred to by
nextbfile.

10.5.1. continued

Examples:

i)

In a certain implementation, channel six is a line printer. It has
no input information, nextbfilel6] is initialized to refer to a
backfile the book of which is an integer array with upper bounds
2000, 60 and 144 (2000 pages of continuous stationery), with the
end of file at position (uf 1, 1), and next equal to nil. All

L 3
elements of the book arelyndefined.

.

Channel four is a drum, divided into 32 segments each being one
pege of 256 lines of 256 bytes. It has 32 backfiles of input
information (the previous contents Ofﬁ ‘F‘E%.,lirum), so nextbfilel 4]

is initialized to refer to the first elememt of a chain of 32
backfiles, each referencing the next, the last one having next
‘equsl to nil. Each of those backfiles haé an end of file at positior

(2, 1, 1).

iii) Channel twenty is a tape unit, it can accommodate one tape at a time

one input tape is mounted, and another tape laid in readiness. Here,
nextbfile[20] is initialized to refer to a chain of two backfiles.

Since it is part of the standard-declarations, all input is part of

the program, though not of the particular-program.

In opening (10.5.1.2.c) a given file on a given channel, the

first backfile is taken from the chain referenced by nextbfile of the
channel and is made to be referred to by bfile of the file, obliterating

t&he previous backfile, if any, of the file.

Apart from the possibility of being obliterated, at any stage in the

elaboration of the particular-program, all backfiles are either pert of
the nextbfile chain of the channel, or referenced by a file opened ap

that channel, or part of the closedbfile chain (10.5.1.1.0) of that

channel.

. Fat e
This models the pead of a magnetic tape thet, apart from the

possibility of being left as a scratch tape, is either ready to be

mounted on, in use on, or saved from the tape unit.

When a file is "closed" {10.5.1.2.q}, its backfile is attached to

the chain referenced by closedbfile of the channel; all files reférencing

the same backfile as that file are then unavailable for further transput.



10.5.1. continued 2

Example:
begin file tapel, tape2 ;
open(tapel, 20) ; tape2 := tapel ;
out(tape2, fd.2df, pi) ; new page(tapel) ;
elose(tape2)
end

The comv of a given file is used in conversion; if conv of the
file is nil, then stand comv of the channel on which the file was
opened is used as "conversion key", and, otherwise, the string to which

conv of the file refers.

On output, if a character to be converted is not the same as some
element of the conversion key, then the further elaboration is undefined;
otherwise, the character is converted to an integer, viz. the lowest
among the ordinal numbers of those elements of the key which are the

same as that character.
smaller than one or

On input, if an integer to be converted isflarger than the number of &
p e

elements of the conversion key, then the further elaboration is undeflned
otherwise, the integer is converted to that character in the key whose

ordinal number is that integer.

On all files opened on a channel for which set possible is false,
and put possible end get possible both true, input and ocutput may not

be "alternated", i.e. after opening or resetting {10.5.1.2.e} such a

fiie, either is possible, but, once one has taken place on the file, the §

other may not until the file has been reset again. Before the first
output takes place on such a file, its book is filled with spaces. If,
after output, such a file is reset, then an end of file is positioned
at the current page, line and character number. (Such a file might be
implemented with a buffer that holds one line.)

On all files opened on a channel for which set possible is false,

binery and nonbinary transput may not be alternated. }
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magnetic

properties card reader card punch tape unit line printer
reset possible false false true tr;e true false
set possible false false false false false false
get possible true false true true false false
put possible false true false true true true
bin possible false true false true false false
max page 1 1 very large very large very large very large
max line large very large 16 large " 60 60
max char T2 80 8L large 144 144
stand conv a 48~ or blh-character code 64—-char code some code line-pr code | line-pr code
max nmb files 1 1 1 1 1 1
properties magnetic disc magnetic drum paper tape reader tape punch
reset possible true true true false false false
set possible true false true false false false
get possible true ~ true true true true false
put posaible true true true false false true
bin possible true true true false true false
max page 200 1 1 1 1 1
max line 16 1 256 very large very large very large
max char 128 524288 256 80 150 L
stand comv some code some code some code 5-hole code T-hole code lathe code
max nmb files 10 k 32 1 1 1

TABLE I: Properties of some possible channels




10.

a)

b)

c)

d)

e)

f)

g)

h)

i)

)

k)

1)

m)

n)

o)

int ymb channels = ¢ an integral-expression indicating the number of

5.1.1,. Channels

transput devices in the implementation e
struct % bfile = ([,,] int book, int lpage, lline, lchar,

ref bfile next) ;
L7 : nmb channels] ref bfile % nextbfile (c some appropriate

initialization ¢) ;

L7 : mmb channels] bool reset possible = ¢ a row-of-boolean~expression,
indicating which of the physical devices corresponding to the
channels allow resetting {e.g. rewinding of a magnetic tape} ¢ ;

(7 : nmb channels) bool set possible = ¢ a row-of-boolean-expression,
indicating which devices can be accessed at random e

L7 : mmb channels] bool get possible = c a row—of—boolean—expression'
indicating which devices can be used for input e

L7 : mnmb channels] bool put possible = ¢ a row-of-boolean~expression
indicating which devices can be used for output e

L7 : mmb channels] bool bin possible = ¢ a row-of-boolean-expression
indicating which devices can be used for binary transput e s

L7 : nmb channels] int max page = ¢ a row-of-integral-expression
giving the maximum number of pages per file for the channels e

L7 : mmb channele] int max line = ¢ a row-of-integral-expression
giving the maximum number of lines per page e

L7 : nmb channels] int max char = ¢ a row-of-integral-expression
giving the maximum number of characters per line e

L7 : nmb channels] ref string % stand comv = ¢ a row-of-reference~to- E

row-of-character—expression giving the standard comversion keys for
the channels ¢ ;
L7 : nmb channels] int max nmb files = ¢ a row-of-integral-expression

giving the maximum rumbers of files the channels can accommodate es ‘

L7 : nmb channels] int % nmb opened files
(U7 : nmb charmels] int zero ; for i to nmb channels do zerolili= 0 3
zero) ;

L7 : nmb channels) ref bfile % closedbfile
(L7 : nmb channels] ref bfile nil ; for i to nmb channels do

nillil'= nil ; nil) ;

10.5.1.1. continued

p) int stand in channel = ¢ an integral-expression whose value does not
 exceed nmb channels, such that get possible [stand in channell is
true, and stand conv Letand in charmell comprises, in some order,
all character—tokens ¢ ;

q) int stand out channel = ¢ an integral-expression whose value does not.
exceed nmb channels, such that put possible [stand out channell ie
true, and stand conv lstand out channell comprises, in some order,
all character-tokens ¢ ;

r) int stand back chanmel = ¢ an integral-expression whose value does ,

—;ot exceed nmb ‘channels, such that reset poeeible [stand back channel]
set possible [stand back channell, get possible [stand back channel],
put possible [stand back charmell and bin possible [stand back
charmell are true and stand conv [etand back channel] comprises,
in gome order, all character tokens ¢ ;

8) proc file available = (int channel) bool :

(rmb opened files [channell < max nmb files [channell) ;

10.5.1.2. Files

a) struct file = (ref bfile % bfile, .
ref int % page, % line, % char, % chan,
ref bool % state def, % state get, % state bin, % opened,
ref string conv) ;
b) proc % undefined = expr((false | true) | skip) ;
c¢) proc open = (ref file file, int ch) :
if file available (ch)
then file := file(nextbfilelchl, 1, 1, 1, ch, false, false, false,
true, nil) ; nextbfilelchl := next of nextbfilelchl ;
nmb opened fileslch) plus 1
else undefined
F i |
d) proe set = (file file, int p, 1, ¢) :
if set posstiblelchan of filel A opened of file
then page of file :=p ; line of file := 1 ; char of file :=c ;
(outside(file) | undefined) - :
else undefined

I




10.5.1.2. continued

e) proc reset = (file file) : .
if reset possiblelchan of filel A opened of file
then if state def of file A — state get of file A
—s8et possiblelchan of filel
then lpage of bfile of file :
lline of bfile of file :
“lchar of bfile of file :
It s
page of file := line of file := char of file :=1 ;
state def of file := false hav of File<1 V
else undefined B < fine of Eile<t V
i ' T\\pagesf Bile<l v
f) proc % outside = (file file) bool : (opened of file IJ
line ended(file) VvV page ended(file) v file ended(file)) ;
g) proc file ended = (file file) bool : (opened of file |
int p = page of file, lp = lpage of bfile of file,
1 = line of file, 1l = lline of bfile of file,
¢ = char of file, le = lchar of bfile of file ;
(p<1lpl false |: p> 1Ip | true |: 1 < 11 | false
[: 2>10 ) true | e 2 le)) ;
h) proc line ended = (file file) bool :
(opened of file | char of file > max charlchan of filel) ;
i) proc page ended = (file file) bool :
(opened of file | line of file > max linelchan of filel) ;
j) proc % get string = (file file, refl1 : int nl char s) :
if get poesiblelchan of filel A opened of file
then string comv = (comv of file :=: nil | stand comvlchan of filel |
conv of file) ;

page of file ;
line of file ;
char of file

\'

int p = page of file, 1 = line of file ; ref int e = char of fiZ‘f

if — set possiblelchan of filel thef state def of file
then(—state get of file Vv state bin of file | undefined)
elee state def of file := state get of file := true ;
state bin of file := falge
picl
for i to n do(outside(file) | undefined |
s[Z] := comvlbook of bfile of filelp, 1, 1] ; c plus 1)
else undefined |
Lt s

10.5.1.2. continued 2

k) proc % put string = (file file,[1 : int nl char 8) :
- if put possiblelchan of filel A opened of file
then int ch = chan of file, p = page of file, 1L = line of file ;
string conv = (comv of file :=: nil | stand convlech] |
conv of file) ; int space, h ; ref int ¢ = char of file ;
if — set poseiblelch] thef state def of file
then(state get of file Vv state bin of file | undefined)
else state def of file := true ; state get of file :=
state bin of file := false ; _
(— char in string(".", space, comv) | undefined) ; .
for i to max pagelch] do for j to max linelch] do
for k to max charlchl do
book of bfile of fileli, j, k] := space
ey
for i to n do(—char in string(slil, h, conv) v outside(file) |
undefined | book of bfile of filelp, 1, el :=h ; c plus |
else undefined
P
1) proc char in string = (L1 : 1] char e, ref int i, [71 : int wlchar s)boc
(for k to w do(c =glk] | ¢ :=k ; 1) ; falge. 1 : true) ;
m) proc space = (file file) : '
(char of file plus 1 ; outside(file) | undefined) ;
n) proc backspace = (file file) :
' (char of file minug 1 ; outside(file) | undefined) ;
o) proc new line = (file file) :
(line of file plus 1 ; char of file :
p) proc new page = (file file) :
(page of file plus 1 ; line of file :
outside(file) | undefined) ;
qQ) proc close = (file file) : : /
if opened'_o_f file
then int ch = chan of file ; (reset possiblelch] | reset(file)) ;
next of bfile of file := closedbfileleh] ;
elosedbfileleh] :=bfile of file ; opened of file := false ;
rmb opened filesleh]) minus 17

fis

1 ; outgide(file) | undefined)

char\gf file :=17;



.2. continued
10.5.1.2. comtinued 3 10.5.2. co

c¢) proec L int string = (L int x, int w, r) string :(fr7 A 'r<i7‘

r) file stend in = (file f ; open(f, stand in channel) HE
s) file stand out = (file f ; opem(f, stand out channel) s f);
t) file stand back = (file f ; open(f, stand back channel) 3 ) ;

Fotring e("") ;_Ql'p_t_n(gﬁ:c);_lij_rig lr = Kr ;
for i tow - 1 do(e prug dig char((n +: Ir)) ; n over Ir) ;
m=L0| (x2L0| ™" | "") +e));
d) proe L real string = (L real x, int w, d, e) string :

(d20ArAe>0ArAd+ve+ 4s<syp |

Lreal g =L10 A w-d-~-e-4) ;Lreal h=g x L.7 ;
L real y(abs x) ; int p(0) ;

while y = g do(y times L.7 ; p plug 1) ;

(y > L0 | while y < h do(y times L10 ; p minus 1)) ;
(y+ L5 xLlAd2g|ly:=h;pplusl) ;
Ldecstring((x 20 |y | ), w~e -2, d +

—~ Mo + int string(p, e + 1, 10}) ;

{Certain "standard files" (r, s, t) need not bve opened by the
programer, but are opened for him in the starxiaz*d-declaratiohs;
The-—prossduse print (10.5.2.a) can be used for output on stand out,
read (10.5.3.a) for input from stand in, and write bin {10.5.6.a} and
read bin {10.5.7.a} for transput involving stand back. }

u) proc char mumber = ( file f) int : (opened of £ | char of f) ;
v) proc line number (file f) int : (opened of f | line of f) s
W) proc page number = (file f) int : (opened of f | page of ) ;
10.5.2, Formatless output

e)arﬁc_Ldecstring=(£ﬂz£x,ﬁw, d) string :
(abs x <L10 A (w-d-2)Adz0nrd+2s<w]| string s(") ;
L real y((abs x + L.5 x L.1 A d) x L.71 b (w-d-2)) ;
for t tow - 2 do & plus dig char((int ¢ = entier S(y times L10) ;

a) proe print = ([] outtype x) : put(standout, x) ;

b) proe put = (file file, (1 : int n) outtype x) : (&1’.'.7:1{2"@
(L7 : int 11 eimplout Yy = straightout x[i] ;
for § to 1 do
(stﬁms;égo_lb;c_h_ar_c;

(¥ (Lint 2 ; (2 ::= yl[j] |
8. i= L int string(i, L int zl.n'dth + 17, 70)
8ign supp zero(sU,‘Mé))) t) ;

(t (Lreal  ; (x ::= ylj) | & := L veql string  _
(z, L real width + L exp width + 4, L real width} L ezp width) §
sign eupp zero(y))) ) ; 5, Lreal widbh+5, L vea width + Loxp widthd

(¥ (L compl 3 ; (z ::= y[j] | ‘
put(file, (re z, "] .", m z)) ; end)) ¥) ; -

(b ::=ylj]l | 8 := (b | T "em) :

(e ::= yljl | nextple(file) ; put string(file, ¢) ; end) ;

(8 ::= yljl | refl]: int nl char t =g ;
for © to n do put(file, s[il) ; end) ;

(ﬂfz:ﬂn.]_c}_zgr_t=s;£@c7=cha.r_c_>ff1lle;

char of file := el + n ; (line ended(file) | nextple(file) |
char of file := el1) ; put string(file, s) ;

(—1line ended(file) | space(file))) ;
end: gkip))) ;

y minus Ke 5 ¢)) ;
(@20 | ™" | "") +8] :w-d-21+""+glw-d-12::1) K
£) proc % dig char = (int x) char : ("0123456789abedef"lx + 11) ;
: {In connection with 10.5.2.c, d, e, see Table II. }
vab sbving €, d @,
’g) proe % sign ?;:Fp sero = ettt ohm—e) :
for i from § to & while oli1 = "0" do
(elz] :=cli - 71 ; olZ - 71 := " "71)
h) int L int width = (int (1) ;
while L10 4 (e - 1) < L7 x L max int do c plug 1 ; e) ;
i) int L real width = - entier S(L In(L emall real) / L In(L10)) ;
) int L exp width = 1 + entier §thn(L max real) / L Zn(£70))/1LQh(£1°}
k) proc % newtple = (file file) :
((line ended(file) | new line(file)) ;
(page ended(file) | new page(file)) ;
(file ended(file) | undefined)) ;




10.5.3. Formatless Input

t w-1 .
‘ o a) proc read = (L] intype x) : get(stand in, x) ;
L int string +DDDDDDDDDDD o) E—roc got = (fils file, (1 : int v) intype o) :
w begin char k ;
op ? = (string 8) bool : ‘
vz 2 (outside(file) | false |: get string(file, k) ; .
5DDDDD. bDDDDDD % ing (k, loc int, 8) |
L dec string : +DDDDDD . DDDDDDDD char in string
. true | backspace(file) ; false) ;
) proc read num = gtring expr
(skip spaces ; ? "+ =" | k + (skip spaces ; read dzg) I
f-,;d:\ei ,._.«:i.\ /e\ "+" + vead dig) ;
b weal string : +2DDDDDED . DDDDDD) 00D proc ekip spaces = expr while(nextple(file) ; ? ".") do gkip ;
m . i - -
w proc read dig = string expr

(string t("") ; while ? "0123456789" do t plus k ; t) ;
proc read real = gtring expr

(read num + (7 "." | "." 4+ read dig | ™) + .
(Fedlrptmgpdigppllg (2 Mgl I IE) readwl "my) .
for i towdo
(L7 : int 1] ref simplout y = straightin x(1] ;

TABLE II: Display of the values of
L int string, L dec string and L real string

frame for j to tdo |
(vef bool bb ; ref string se ; ref char cc ;
L7 type (1 = integer, 2 = real fixed, 3 = real floating, — _— ,

val it := L string int(read num, 10))) %) ;

(+ (ref L real xx ; (xx ::= y[j] |
val xx := L string real(read real))) %) ;

(¥ (ref L compl 3z ; (32 ::= y[jl | get(file, rve of az) ;
(skip spaces ; ? "|" | get(file, im of zz) | undefined))) %) ;

N
‘ T = integer choice, 8 = boolean)
[21  radix (2, 4, 8, 10 or 16) -

(3] sign (0 = no sign frame, 1 = sign frame '+', 2 = sign frame v_'|)»{)

complex fixed, 5 = complex floating, 6 = string,

(4] number of digits before point; if type = 1 then w-7, else if _
type = 2 or 4 then w-d-2 else if type = 3 or 5 then w-d-e-4, or,

(bb ::= y[41 | skip spaces ; val bb :\= (7 "Mo" | k = mm) g
1f type = 6, then number of characters in string (ee ::= ylj1 | nextple(file) ; get 3tm,ng( file, ce) ; end) ;
[5] nu.mber of digits after point; if type = 2, 3, 4 or 5 then d (eg ::= y[jl | refl1: int nl char t = i

[6] sign of exponent; if type = 3 or 5 then as [3] ﬁo_r; 1 to n do get(file, sslzl) ; end)

(—line ended(file) |: MI‘" " | undefined) ;
end: skip end ;
C)LogLstmngmt— (L7 : int w] char x, int r) L int :
(L int n(L0) ; L int lr = kr ; for i from 2 tow do
n=nxlr + K(int d = char dig(x(<]) ; (d <r | d)) ;
({71 = "7 | n |: 2[7) = "=" | =n)) ;

(7]  number of digits of exponent; if type = 3 or 5 then e
(81, .., [74] as [7], ses [71 vhen frame[7] = b or 5

TABLE III: Significance of the elements of frame



10.5.3. continyed

d) proc L string real = (string x) L real :
(int e ; (char in string("y", e, x) |
L string dee(xl1 : e - 71) x L10 A string int(xle + 1 :: 11, 70) |
L string dec(x))) ;
e) proe L string dee = ([7 : int vl char x) L real :
(L real »(L0) ; int p ; (char in string(".", p, x) |
(7 ‘w-2)char 8 = x[2 : P-T:11+xlp+17::17];
foritow-2dor :=L1u><r+
X(int d = char dtg(x[z]) s (d<10 1| d)) ;
(x[71 = ™" | p |: 2[7] = "? | _p) x L1 4 (w ~p) |
L string dec(x + "."))) ;
) proc % char dig = (_q;}_z_ch)ﬂ:
(int < ; (char in string(zx, i, "0123456789abedef™) | i - 1)) N

10.5.4. Formatted output

a) proc out = (file file, tamrof tamrof, [1 : int n] outtype x) :
begin string format = format primary list pack
("("+ F of tamrof +")", Zoe int(1)) ; int p(1) ;
forktondo
(L7 : int 1] simplout y
for jtoldo
(L7 : 14] int frame ; int q(p) ; pattern(format, ps frame) ; ]
(frame(1] | int, real, real, compl, compl, string, intch, bool)
int: (¢ (L nt £ 5 (2 ::= yrgl | !
trans.edit L znt(fv,Ze, i, format, q, frame) ; end)) %) K
undefined,
real: (¢ (L real = ; (x ::= y[5] | .
trane edit L real(file, x, format, q, frame) ; end)) %) ;
(¥ (Lint ©; (¢ ::= y[j] |
trans edit L real(file, i, format, qs frame) ; end)) %) ;
undefined. .
compl: (% (L compl z ; (z ::= ylgl |
trans edit L compl(file, z, format, qs frame) ; end)) %) ;
(¥ (Lreal « ; (x ::= y[j] |
trans edit L compl(file, x, format, qs frame) ;
(+ (Lint 2 ; (¢ ::= 4[4 |

trans edit L compl(file, i, format, qs frame) ; end)) %) ;
undefined.

= straightout z[k] ;

end)) }) ;

10.5.4. continued

string: ([1 : frame[4]] char & ; char ¢ ;
‘ (8 ::= yljl |
trans edit stmng(ftle 8, format, q, frame) ; end) ;
(e ::= ylgl |
trans edit string(file, e, format, q, frame) ; end)) ; .
undefined.

inteh: (int © 5 (1 ::= ylgl | 7
trans edit choice(file, i, format, q) ; end)) ; undefined.
bool: (bool b ; (b ::= yljl |
trans edit bool(file, b, format, q) ; end)) ;
end: do insertion(file, format, q) ; p plus 1
J))

undefmed

end ;
b) ;_r—;;c_,% format primary list pack = (string s, ref int p) string :
(string t(format primary(s, p)) ; |
while slpl = "," do t plus "," + format primary(s, p) ; pplus 1 ; t)
c) m_mo?mat pﬁmary = (string s, ref int p) string :
(int n, q ; string f(p plus 1 ; insertion(s, p)) ;

q :=p ; replicator(s, p, n) ;
(8lpl = "(" | string t = format primary list pack(s, p) ;
Yondo fplus t | p := q; f plus pattern(s, p, loell :
f+ insertion(s, p)) ; o
d) proc % insertion = (string s, ref int p) string :
(int q = p ; skip insertion(s, p) ; 8lq :p -1 :11) ;
e) proc % skip insertion = ([7 : int 1] char s, ref int p) :
while(p > 1 | false |: skip align(s, p) | true |
8kip lit(s, p)) do skip ;

t) proc % skip align = (string s, ref int p) booZ
(int q = p ; replicator(s, p, loc int) ;

741 int)) ;

(char in string(s(p], locint, "z yp L k") |
pplus 1 ; true | p := q ; false)) ;
g) proe % replicator = (stmim 8, ref int p, n) :
(string t("") ; while char in string .
(slpl, loc int, "0723456789") do(t plus slpl ; p#elss 1))
= (Tt ="" |1 | string int("+" + t, 10))) ;
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j) proc % trans edit L int = (file f, L int %, string format,
‘ref int p, (] int fr) :
trane edit string(f, L int string(Z, fri4]l + 1, fr(2]1), format, p, fr.
k) proc % trans edit L real = (file f, L real x, string format,
ref int p, (1 int fr) : |
trans edit string(f, stringed L real(x, fr), format, p, fr) ;
1) proc % stringed L real = (L real x, L[] int fr) string :
(fr(1] = 2 | L dec string(x, frl(4] + fr(51 + 2, fr{5]) |
L real string(z, fridl + frl51 + frl7] + 4, fri51, fL71)) ;
m) proc % trans edit L compl = (file f, L compl z, L[] int frame) :
trans edit string(f, (L1 : 14) int g(fr) ; gl1) minue 2 ;
stringed L real(re z, gl1 : 71) + "|" + stringed L real
(im z,3%L8 : 14 : 11)), format, p, fr) ;
n) proc % trans edit string = (file f, string x, [1 : int m] char format,
ref int p, [] int frame) :
begin int pl1(1), n ; bool supp, string s(z)_ ; .
op ? = (string s) bool :
- (do insertion(file, format, p) ; p > m | false |

int q =p ; replicator(format, p, n) ;

(supp := format(pl = "s" | p plus 1) ;

(char in string(formatlpl, loc int, e) | true | p = q ; false)
proe copy = expr((—suppl| put string(f, slpl’l)) ; pl plus 1) ;
proe intreal mould = expr
(? "" ; aign mould(frame(31) ; int mould ;

(2 "." | copy ; int mould |: slp7] = "." | pl plus 1) ;

(? Me" | copy ; sign mould(frame(6]) ; int mould)) ;
proc sign mould = (int sign) : (sign =0 | pl plus 1 |

8[p7] = (8[p7] = II+II l (sign , "+"’ "—.—ﬂ)" II_II) ;

(? "z" | aign supp zero(s}pb; pl +n =it | n :=0) ;
put string(file, slp? : pl +n : 11) ; p plus 1) ;
proc int mould = expr .

(1 : (2 "z" | bool zs (true) ; to n do
(elp7] = "0" A z8 | put string(file, ".") ;
pT plus 1 | 28 := false ; coby); 1) ;
(2 "d" | to ndo eopy ; 1)) ;

1) proc % skip lit = (string s, ref int p) bool :
(int q = p ; replicator(s, p, loc int) ;

(s[p] = mnnnn | while(s[p pzus 71 = nunn | SEp glus 7] = nnne |

true) do skip ; true | p := q ; false)) ;
i) proc % pattern = (L1 : int m] char format, ref int p,
refl] int frame) string :
begin int n ; wk p0O=p;
op ? = (string 8) bool :
(ekip insertion(format, p) ; p > m | false |
int q = p ; replicator(format, p, n) ;

(formatipl = "s" | p plus 1) ;
(char in string(formatlpl, loe int, s) | true | p := q ; false)
proc intreal pattern = (refl1 : 71 int frame) bool : ‘
((num mould(framel2 : ¢ : 1) | frame(l1] :=17 ; 1) ;
(7 " " |: num mould(framel3 : & : 11) | framell] :=
(7 "e” |: num mould(framels : 7 : 11) | framell] :
false. 1 : true) ;
proc num mould = (refl1 : 3] int frame) bool :
((2 """ | framel1] :=n) ; (2 "2" | framel3] plus n) ;
(7 "+" | frame(2] :=1 |: 2 "-" | framel2] := 2) ;
while ? "dz" do framel3] plus n ;
formatipl = ", " v formatlpl = "i") ;

no

@ b
YRR
Noli
e W

proc string mould = (refl] int frame) bool :
(while ? "a" do framel4] plus n ; formatlpl = ",") ;
for i to 14 do frameli] := 0 ;
(intreal pattern(framel? : 71) | (? "i" | p plus 1 ; ]
frame[1] plus 2 ; intreal pattern(framel8 : 14 : 11)) ; end) ; ]
(string mould(frame) | framelll := € ; end) ; i
(? """ | framel1] := 8 | p plus 1 ; framell] :=7) ;
(formatlpl = "(" | .
while ? "(," do skip lit(format, p) ; p plus 1) ;
end: . skip insertion(format, p); formaClpO: p—1]
end ;
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proc string mould = expr while ? "a" do to n do copy ;
teg: (framell] =
framel1] > 3 | p plus 1 ; copy ; intreal mould)

6 | string mould |: intreal mould ;
end ;
o) proc % trans edit choice = (file f, int c, string format, ref int p) :
(¢ > 0 | do insertion(f, format, p) ; p plus 2 ;
to ¢ - 1 do(skip lit(format, p) ; formatlpl = "," |
p plus 1 | undefined) ;
do 1it(f, format, p) ;
while formatlpl # ")" do(p plus 1 ; skip lit(format, p)) ;
p plus 1 | undefined) ;
p) proc % trans edit bool = (file f, bool b, string format, ref int p) ;
(do insertion(f, format, p) ; (formatlpl = "(" |
p plus 2 ; (b | do 1it(f, format, p) ; p plus 1 ; skip Uit _
(format, p) | ekip lit(format, p) ; p plus 1 ; do lit(f, format, p))
put string(f, (b | "1" | "0"))) ; p plus 1) ; 1
q) proc % do insertion = (file f, U1 : int 11 char 8, ref int p) :
while(p > 1 | false |: do align(f, s, p) | true |
do Uit(f, s, p)) do skip ;
r) proc % do align = (file f, string s, ref int p) bool :
(int q = p ; int n ; replicator(s, p, n) ;
(slpl = "z" | to n do space(f) ; 1 |:
slp] = "y" | to n do backspace(f) ; 1
slpl = "p" | to n do new page(f) ; 1 |:
elpl = "1" | to n do new line(f) ; 1 |:
8lp) = "k" | char of f :=n ; 1) ; p :=q ; false.
1:pplus 1 ; true) :
8) proc % do lit = (file f, string s, ref int p) bool :
(int q = p ; int n ; replicator(s, p, n) ; (slpl = ""re |
while(elp plus 11 = """ | glp plus 11 = """ | true) do
put string(f, slpl) ; true | p := q 5 false)) ;

begin

int:

real:

compl:

string:

inteh:

bool:

10.5.5. Formatted input

a) proc in = (file file, tamrof tamrof, L1

: int n] intype x) :

string format =
format primary list pack("("+ F of tamrof +")", loc int(1)) ;

int p(1) ;

f_o_r_ktondo skraighbin

(7 : int ZJE'«TEQZ y = mxm ;
for j tol do ‘

(L7 : 741 int frame ; int q(p) ;
(fz-ame[7] | int, real, real, compl, compl, string, inteh, bool)
(% (g'_efL tnt 11 3 (i1 ::= ylgl |

trang indit L int(file, ii, format, q, frame) ; end)) #) 3
undefined.

(¥ (ref L real xx ; (xx ::= yljl |

trans indit L real(file, xx, format, q, frame) ; end)) %) ;
undefined.

(% (ref L compl z3 ; (33 ::=

pattern(format, p, frame) ;

ytdl |

“trans indit L compl(file, 2z, format, q, frame) ; end)) %) ;

undefined.
(ref string ss ; ref char cc ; [1 : frame[4]] char t ;
trans indit etring(file, t, format, q, frame) ;>

t; end |: ce

(ss ::= yljl | val ss := pi= ylgl |

val ece := tl1] ; end)) 5

undefined.

(ref int i< ; (i1 ::= ylgl |

trans indit choice(file, i1, format, q) ; end))
undefined.

(ref bool bb ; (bb ::= yljl | N

trans indit bool(file, bb, format, q) ; end)) ;
undefined. »

: req insertion(file, format, q) ;s p plus 1))
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proc int mould = expr

(L : (? "z" | bool zs (true) ; to n do x plus
(supp | "0" |: next = "." A zs | "0" | 38 := false ; k) ; 1
? "d" | to ndo x plus(eupp | "0" | next) ; 1)) ;

b) proc % trans indit L int =
(file f, ref L int i, string format, ref int p, [1 int fr) :
(string t ; trans indit string(f, t, format, p, fr) ;
1 := L string int(t, 10)) ;

¢) proc % trans indit L real = ‘ '
(file f, ref L real x, string format, ref int p, [] int fr) :
(string t ; trans indit string(f, t, format, p, fr) ;

proc string mould = expr while ? "a" do to n do x plus

(supp | "." | next) 5 . . .
tis: (framel 1] = 6 | string mould |: intreal mould ; frame(1] > 3 |

x := L string real(t)) ; JmM" ; intreal mould) ;

d) proe % trans indit L compl = t =z
(file f, ref L compl z, string format, ref int p, [1 int fr) : end ;

£) proc % trans indit choice =
(file f, ref int e, string format, ref int p) :
(req insertion(f, format, p) ; p plus 2 5 ¢ :=1 ;
while — ask lit(f, format, p) do
(c plus 1 ; format{p]l = "," | p plus 7 | undefined) ;
while formaf[p] # ")" do(p plus 1 ; skip lit(format, p)) ;

(string t ; int ¢ ; trans indit string(f, t, format, p, fr) .,'

3 := (char in string("|", i, t) |
(L string veal(t[1 : i - 11) | L string veal(t[< + 1 :: 11)))) ]
e) proc % trans indit string =
(file f, ref string t, [1 : int m} char format,
ref int p, [] int frame) :

begin int n ; bool supp ; char k ; string x("") ; p plus 1 ; req insertion(f, format, p)) ;

g) proc % trane indit bool =

(file f, ref bool b, string format, ref int p) :
(req insertion(f, format, p) ; (formatlp + 11 = "(" |

op ? = (string &) bool :

(req insertion(format, p) ; p >m | false |
int q =p ; replicator(format, p, n) ;
(supp = formatp] = "s" | p plus 1) ; p plus 2 ; (b := ask lit(f, format, p) |
p plus 1 ; ekip lit(format, p) |: — ask lit(f, format, p) |
undefined) |
char k ; get string(f, k) ; b := (k= "1"| true |:
ko= ’:Q" I .E‘_Z_Bf.)) ;
p plus 1 ; req insertion(f, format, p)) ; .
h) proc % req insertion = (file f, [1 : int 1] char s, ref int p) :
- uhile(p > 1| false |: do align(f, s, p) | true |
req lit(f, s, p)) do skip ; '
i) proc % req lit = (file f, string 's‘, ref int p) bool :
(int q = p ; int n ; replicator(s, p, n) ;

(char in string(formatlpl, loc int, 8) | true |
p :=q; false)) ;
op ! = (char ¢) : (x plus(supp | ¢ |: next =c | ¢)) ;
proc next = char expr(get string(f, k) ; k) ;
proc intreal mould = expr
(? """ ; gign mould(framel31) ; int mould ;
(2 "0 |2 int mould) ;
(7 "gh | ) Mo" s eign mould(framel6]) ; int mould)) ;
proc aign mould = (int sign) : (sign > 0 |
(? "z" | bool zs(true), sk(false) ; string t("") ;
ton +1 do(next =" " | gk :=true ; (—ze | undefined) 9

(s[p] = minn | int p=p ; tondolp =1 ;
while(s(p. plug 7] = """" | s[p plug 7] = """ | true) do
(char k ; get string(f, k) ; k # e(p] | undefined)) ; true |

p := q ; false)) ;

38 = false ; t plus k) ;

z plus(sign = 2 A gk A t[T1 # "=" | ™"+ ¢ | t) |
x plus(sign =2 Anext = "." | "+ | k)) ;
p plus 1) ; .
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J) proc % ask it = (file f, string e, ref int p) bool :
(int ¢ = char of f ; int n ; replicator(s, ps n) 3
(elpl = """ | int » =p ; to ndolp :=r;
while(slp plus 71 = """ | g(p plus 11 = rmnnn I tmie) do
(char k ; get string(f, k) ; k # s[p] [ 2)) ;

l: while(slp plus 71 = """ | g[p plug 11 = Mrmm | true) do ekip ; d

char of f = ¢ ; wf’ézlse)) 3
10.5.6. Binary output

a) proc write bin = ([] outtype x) : put bin(etand back, x) ;
b) proc put bin = (file file, [1 : int nl outtype x) :
if bin possiblelchan of filel A opened of file
then if — set possiblelchan of filel thef state def of file
then(state get of file v —state bin of file | undefined)
else state def of file := state bin of file := true ;

state get of file := false
hicl
for k to n do

(L7 : int 13 simplout y
for jto 1 do
(L7 : int m] int bin = to bin(file, yljl) ;
for i to m do(next ple(file) ;
book of bfile of filelpage of file, line of file,
char of filel := binl<1)))
else undefined
Iis
¢) proc % to bin = (file f, simplout z) (1 int :
¢ a value of mode 'row of integral' whose lower bound ies onme,
and whose upper bound depends on the value of 'f' and on the
mode of the value of 'x's furthermore,
x = from bin(f, to bin(f, x)) ¢ ;
a) proe % from bin = V(ﬁie_ Fs L1 int y) simplout :

e a value, if one exists, of a mode from which that specified by

straightout x[k] ;

simplout is united, such that y = to bin(f, from bin(f, y)) ¢ ;

10.5.7. Binary input
a) proc read bin = (U] intype x) : get bin(stand back, x) ;
b) proc get bin = (file file, L1 : int nl intype x) :

if bin possiblelchan of filel A opened of file
then if — set possible [chan of filel thef state def of file
then(—egtate get of file vV — state bin of file | undefined)
g—l_?_g state def of file := state bin of file :=
state get of file := true
fis
for k o n do
(L7 : int 1] ref simplout y = straightin z(k] ;
forjtolde
(L7 : int m] int bin = to bin(file, yljl) ; simplout r ;
for i to m do(next ple(file) ;
binli] := book of bfile of filelpage of file, line of file,
char of filel) ;
= from bin(file, bin) ;
(§ (ref L int ii ; (i ::= y[gl |:
val 72 :=r | 1 | undefined)) %) ;
(¥ (ref L real xx ; (xx ::= yljl |:
val xx ::=r | 1 | undefined)) t) ;
(f (ref L compl zz ; (23 ::= y[jl |:
val 33 ::=1r | 1 | undefined)) %) ;
(ref string ss ; (ss ::= yljl |:
val s ::=r | L | undefined)) ;
(ref char cc ; (ce ::= yljl |: val ce ::=r | 1 | undefined)) ;
(ref bool bb ; (bb ::= yljl |: val bb ::=r | 1 | undefined)) ;
1: 572:2)) 4
else undefined '
fis

{But Eeyore wasn't listening. He was
taking the balloon out, and putting it
back again, as happy as could be. ...

Winnie-the-Pooh, A.A, Milne.}



11. Examples
11.2. Innerproducti

11.1. Complex square root
A declaration in which inmerproduct] is a procedure-with-a-integral-
parameter—and-a-procedure-with—a—integral—parameter—de1iver1ng-a-real-
parameter—and-a-procedure—with—a-integr'al—parameter—delivering—a-real-
parameter-deliver:l.ng—a-real-ident1fier: ' .

A declaration in which compsqrt is a procedure-with-a-[camplex]- |
parameter-delivering-a-[complex]-identifier (Here [complex] stands for 3
structured-with-a-real-named-letter-r-letter-e-and-a-real-named-

letter-i-letter-m.) :
. a) proe innerproductl = (int n, proc(int) real x, y) real :

comment the innerproduct of two vectors, each with n components
a) proc compsqrt = (compl z) compl : ¢ the square root whose real Lcoment pnerp f ? omp ?

ig nonnegative of the complex number z c

2(i), y(i)s © =1, «eoy n, where x and y are arbitrary mappings
from integer to real mumber comment

) begin long real s(long 0) ;

¢) for i to n do & plus leng x(i) x leng y(i) ;

a) short o

e) end innerproduct]

b) begin real x = re z, y = Im 2 ;
c) real rp = sqrt((abs x + sqri(x + 2 + y ¢ 2))/2) ;
d) real ip = (rp =01 0 | y/(2 x rp)) ;
e) (x20| (rp | ip) | (abs ip | (y 20 | rp | -rp)))
f) end compeqrt
[complex]-expression-calls {8.7.1.b} using compsqrt : }'bal-expression—calls {8.1. 1 p} using mnerproiiu 2k

g) compsqrt(vw)
h) compeqrt(-3.74)

f) -mnerproducﬂ(m, (int J)L z1(41, (int J)L y1Lg1)
g) mnerproducﬂ(n, ngin, ncos)

i) compeqri(-1) 11.3. Innerproduct?2

A declaration in which iZnnerproduct2 is a procedure-with-a-reference-
' to-row-of-real-parameter-and-a-reference-to-row-of-real-parameter-
. Gelivering-a-real-identifier:

‘ l) proc imnerproduct2 = (refl1 : int nl real a, b) reai
& the innerproduct of two vectors a and b ‘with n elements e
b) begin long real e(long 0) ;
¢) for i to n do e plue leng ali] x leng bL<] ;
2) short o
e) end innerproduct?

Real-expression-calls using innerproduct?:
) innerproducts(z1, y1)
g8) inmerproduct2(y2021, y2l, 31)



11.4. Innerproduct3

A declaration in which <mmerproduct3 is a procedure-with-a-reference- 1

to-integral-parameter-and-a-integral-parameter-and-a-procedure-

de11vering-a-real-parameter-and-a—procedure-delivering-a—real—para.rreter- 5

delivering-a-real-identifier:

a) proc innerproductd = (vef int i, int n, proc real xi, yi) real :
comment the innerproduct of two vectors whose n elements are the
values of the expressions xi and yi and which depend, in general,
on the value of i comment

b) begin long real s(long 0) ;

c) for k to n do(i := k ; & plus leng xi x leng yi) ;

d) short &

e) end innerproduct3

A real-expression-call using innerproduct3:
£) innerproduct3d(j, 8, x1Ljl, yilj + 11)

11.5. Largest element

A declaration in which agbemax is a procedure-with-a-reference-to-row: ’
row-of—real-parameter-arxi—a—reference—to—real-parameter-a.mi-a—referenc
to—integral—parameter-arﬂ-a—reference-to—integral—parameter—identifier: ]
a) proc abemax = (refl1 : intm, 1 : int n) real a,

b) ¢ result ¢ ref real y, c subseripts ¢ ref int int i, k) g
comment the absolute value of the element of greatest absolute vall ’
of the m by n matrix a is assigned to y, and the subseripts of this |
element to 1 and k comment !

¢) begin y = -1 ;

a) for p tom do for q to n do

e) if abs alp, q1 > y then y := abs al(i :=p), (k

f) end absmax '

=q)] fi

Statement-calls {8.T.1.c} using absmax:
g) absmax(z2, z, 1, J)

h) absmax(x2, ®, loc int, loc int)

11.6. Euler summation

a) proc euler = (proc(int) real f, real eps, int tim) real :

comment the sum for © from 1 to infinity of f(i), computed by means
of a suitably refined euler transformation. The summation ie
terminated when the absolute values of the terms of the transformed
serice are found to be less than eps tim times in succession. This '
transformation ig particularly efficient in the case of a slowly
convergent or divergent alternating series comment

b)l’ﬁi"i’_‘iﬂf n(1), t; real mn, ds(eps); (1 : 161 real m ;

¢) real eum((m(1] := £(1))/2) ; .

a) iozi_fxgm_2M(t:=(g§gds<epslt+7|1))st13m_d_o
;e) begin m := f(Z) ;

£) for k to n do begin mn := ((ds :=mn) +mlkl)/2 ;

g) mlk] := ds end ;

h) sum plus(ds := (abs mn < abs mln]l A n < 16 |

i) _ nplus 1 ; minl :=m ; m/2 | m))

3 ~end ;

k) sum

1) end euler

An expression-call using euler:
m) euler((int i) : (odd < | -1/2 | 1/2), T10-5, 2)

11.7. The norm of a vector

8) proc norm = (refl1 : int nl real a) real :
¢ the euclidean norm of the vector a with n elements ¢
b)  (long real s(long 0) ;
c) _fo_gktondosL_Z_ema[klé«?
a) short long eqrt(s))

For a use of norm as an expression-call, see 11.8.d.



11.8. Determinant of a matrix

a) proc det = (refl1 : int n, 1 : int nl real a,
b) refll : int nl int p) real :

comment the determinant of the square matrix a of order n by the
method of Crout with row interchanges: a is replaced by ite triangul

decomposition 1 x u with all u{k, k] = 1. The vector p gives as

output the pivotal row indices; the k—th pivot is chosen in the k-th |

colum of 1 such that abs I %, kl/row norm is maximal comment
c) _17_6@7_1[7 : n]_r_e;cg: v; real d(1), r(-1), s, pivot ;
a) Jfor i to n do v[Z] := norm(alZl) ;
e) for k to n do

f) begin int k1 = k - 1 ; ref int pk = plk] ;

g) refl,] real al = al, 1 : k11, au = al1 : k11 ;

h) refl] real ak = alkl, ka = al, k1, apk = alpkl,

i) alk = allk], kau = aul, k] ;

5 for i from k to n do

k) begin ref real aik = ka[Z] ;

1) if(s := abs(aik minus innerproduct 2(all<l, kau))/v(<]) > »r
m) then r := s ; pk 1= T ft

n) end for i ;

o) v[pk] := v[k] ; pivot := kalpk] ;

r) for j ton do

a) begin ref real akj = akljl, apkj = apk[Jl ;

r) r :=akj ; akj := if j < k then apkj

s) else(apkj - innerproduct2(alk, aul: k1, j1))/pivot fi ;
t) if pk # k then apkj := —» fi |

u) end for § ;

v) d times pivot

W) end for k ;

x) d

¥) end det .

An expression-call using det:
z) det(y2, 1)

11.9. Greatest common divisor

An example of a recursive procedure:

a) proc ged = (int a, b) int :
¢ the greatest common divisor of two integers c
b) (b=20| abs a | ged(b, a #: b))

An expression-call using ged:
c) ged(n, 124)

11.10. Continued fraction

An example of a recursive operation:

a) op / = (L1 : int n] real a, b) real :
comment the value of a/b ie that of the continued fraction
a7/(b;+ az/(bg + . an/bn)‘") comment

b) m=11al7)/bL7] | al71/(bL7] + al2 :: 71/bL2 :: 1]))

A fomﬁ,tla using /:
e) x1/y?

{The use of recursion may often be elegant rather than efficient
as in 11.9 and 11,10, See, however, 11.11 for an example in which

recursion is of the essence.}
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11.11. Formula menipsation 11.11. continued

aa) elsf ef ::= e then

a) begin union form = (ref const, ref var, ref triple, ref call);

b) struct const = (real value); ab) ref function f = function name of ef;

c) struct var = (string name, real value); ac) form g = parameter of ef;

d) struct triple = (form left operand, int operator, form right operand) : ad) ref var y = bound var of f;

e) struct function = (ref var bound var,. form body); ' ae) function fdash(y, derivative of(body of f, y));
£) struct call = (ref function function name, form parameter') af) call(fdash, g) x derivative of (g, x)

g) int plus = 1, minus = 2, times = 3, by = 4, to = 5; ag) fi

h) const zero (0), one (1);
i) op = = (form a, ref const b) bool :

(ref const ec ; (ec ::= a | val ec =t b | false)) ;
j) op + = (form a, b) form :

ah) end derivative;

ai) proec value of = (form e) real :
‘aj) Dbegin ref const ec ; ref var ev ; ref triple et ; ref call ‘ef;

= sk) If ec ::= e then value of ec
(a=2zero | b |: b =zero | a | triple(a, plus, b)); al) elsf ev ::= e then value of ev
k) op - = (form a, b) form : (b = zero | a | triple(a, minus, b)); am) elsf et ::= e then
1) op * = (form a, b) form : an) real u = value of(left operand of et),
(a =2erovb=2zero| zero |: a=one [ b |: b=one | al ao) v = value of(right operand of et);
triple(a, times, b)); ap) case operator of et in
m) op / = (form a, b) form : aq) - Uu+tv, u -v, uxv, u/ v, exp(v x In(u)) esaa
(a = zero A—-(b‘,=fzero).| zero |: b = one | a | triple(a, by, b)); ar) iz_s_fef 1= e then
n) op 4 = (form a, ref const b) form : as) ref function f = function name of ef;
. (a = one v(b ¢=4 zero)l one |: b :=: one | a | triple(a, to, b)); at) value of bound var of f := value of(parameter of ef);
o) proc derivative of = (form e, c with respect to ¢ ref var x) form : au) value of (body of f)
p) egin ref const ec ; ref var ev ; ref triple et ; ref call ef ; av) fi
q) Zf ec :: e then zero av)  end value of;
r) elsf ev ::= e then(val ev :=: x | one | zero) &x) form f, g ; var a("a", skip), b("b", skip), z("z", skip);
s) elsf et ::= e then ay) start here:
t) form u = left operand of et, v = right operand of et, az)  read((value of a, value of b, value of x));
u) udash = derivative of (u, ¢ with respect to ¢ x), ba) fi=g+x/(b+ax);g:=(f+one)/ (f - onel;
v) vdash = dertvative of (v, ¢ with respect to ¢ x) ; td)  print((value of a, value of b, value of x,
w) case operator of et in value of (derivative of(g, ¢ with respect to ¢ x))))
x) udash + vdash, udash - vdash, be) end example(
y) u x vdash + udash x v, (udash - et x vdash)/v, .
z) v x u A const(ee ::=v ; value of ec - 1) x udash

esac



1.12. Information retrieval

) begin  struct book = (string title, ref book next),
auth (string name, ref auth next, ref book book) ;
ref book book ; ref auth auth, first auth(nil), last auth ;
string name, title ; int i ; file input, output ;
format format = fx30al,80alf ;
broec update = expr if val firet auth :=: nil
then auth := first quth := lgst auth := az:l;(name, nil, nil)
> else auth := first auth ; while val auth :#: nil do
(name = name of auth | known | auth := next of auth) ;
last auth := next o of last auth := quth :=
@_tjl,(name, nil,: nil) ;
known: gki 8kip fi ;

T el Nttt Nt

open(mput remote in) ; open(output, vemote out) ;
out(output, fp
"to, enter. a. new, au thor, . type. ""author"",
a. 8pace, . and. his. name. "1 B -
"to, enter, 's Qs new, book, . type. ""book "" -a.8pace, .
the. name. of. the.author,.a.new line.and, . the, title. "]
"for. a, , Listing, of. the. books. .« by, an. . author, . type, ""ligt"",
2. 8pace, , and. his. name. "1
"to, find, the. author, '+ 0f - a. book, . type, ""Find"", .
- @y new, line, and, the. . title. L
Ilta. end,. type Il5a" "Zﬁ, "”Hend”"")
client: in(input, Je( "author’( "Book", "List ", "Find", Yend", "™)f, ¢) ;
ease i in author, s liet, find, end, error esac ;
mthor inlinput, format, name) ; update ; client ;
baak: in(input, format, (name, title)) ; update 3
£ val book o of auth :=: nig then book of auth :=g book(title, ni
else book := book o of auth ; while val next o of book :#: nil do
(title = title o of book | elient | book := next o of book) ;

(title # title o of book | next o of book := = book(title, nil))
Iz ; alwnt T

aa)
ab)
ac)
ad)
ae)
af)
ag)

ah)
ai)
aj)
ak)
al)

em)

an)
ao)
ap)

aq)
ar)
as)
at)
au)
av)
aw)
ax)
ay)

11.12. continued

liet: in(input, format, name) ; update ;
out(output, fp"author:."30allf, name) ;
if val first of auth nil
then put(output, "no.publications™)
else while val book :#: nil do
begin if line number(output) = max linelremote out]
then out(output, fé1k"eontinued.on.next.page"p
"author:. "30a41k "eontinued"llf, name)
It s out(output, f80alf, title of book) ;
book := next of book
end .
Ii s elient g
find: in(input, fl80alf, title) ; auth := first auth ;
while val auth #: il do
_b_e_gﬂ’poo'k := book of auth ; while val book :#: nil do
if title = title of book
then out(output, fl"author:,"30af,
name of auth) ; client
else book := next of book
fi 3 auth := next of auth
end ; to 2 do new line(output) ;
put(output, "unknown") ; client ;
end: new page(output) ; put(output, "signed.off") ;
close (input) ; clos%(output) '
error: naw line(output) ,L(output "mistake,. try.again. ") ;
new line(input) ; client '
end  authore and titlee enquiry system

{And what impossibility would slay
in common sense, sense saves another way.
All's well that ends well, W. Shakespeare.}



le. LIOSS&LY lceCOnvinued S S

Given below are the locations of the first, end sometimes other, identify 2.2.2.b ‘ of the same mode as 2.2.2.h, i
instructive appearances of a number of words which, in Chapters 1 up to implementation 2.3.c opened 10.5.1
10 of this Report, have a specific technical meaning. A word appearing index 2.2.3.3.a operator-applied L4.3.2.8
in different grammatical forms’(e.g. "conversion", "convert", "converted", indication-applied 4.2.2.a operator-define 2.2.2.¢; h.3.\2.a., 1

"converting") is given once, usually as infinitive (e.g. "convert"). indication-define 2.2.2.c; L4.2.2.a, b outer scope 2.2.4.%.a, ¢, d

action 2.2 3 2.2.5 define 2.2.2.c; 4.1.2.a, b indit 5.5.1 output 5.5.1; 10.5.2, 4, 6
adjusted from 2.2.k.1.h describe 2.2.3.3.b initiate 2.2.2.g; 3.0-2-a - output-compatible 5.5.1
agree 5.5.1 descriptor 2.2.3.3.a inner scope 2.2.4.%.a, c, 4 paranotion 1.1.6.c
ALGOL-68 k.4 - developed T.1.2.b input 5.5.1; 10.5.3, 5, T ~performed S.5vi—
alternate 10.5.1 direct production 1.1.2.c input-compatible 5.5.1 permanent 2.2,2

applied 4.1.2.a ‘ divided by 2.2.3.1.c ; 10.2.3.m instance 2.2.1 : plain value 2.2.3; 2.2.3.1
appoint 6.0.2.a edit 5.5.1 internal object 2.2.1 point 1.1.2.c

arithmetic 2.2.3.1.a . elaborate 1.1.6.e in the sense of numerical analysis portrayal 2.2.h.1.d
assign 2.2.2.1; 8.8.2.c elaborate collaterally 6.3.2.a 2.2.3.1.c possess 2.2.2.4, e, f
asterisk 1.1.2.c element 2.2.2.k; 2.2.3.3.a integral equivalent 2.2.3.1.f possibly intended 2.3.c
automaton 1.1.1.a elementary 2.2.5; 6.4.2.c interrupted 6.0.2.a, b pragmatic 1.3

backfile 10.5.1 end of file 10.5.1 length number 2.2.3.1.Db precede 1.1.6.a

capital letter 1.1.3.a English language 1.1.1.b list of metanotions 1.1.3.b preelsborate 1.1.6.f

case 9.4.c environment enquiry 10.a; 10.1 list of notions 1.1.2.b production 1.1.2.e; 1.1.3.4
channel 10.5.1 equivalent to 2.2.2.'11’ j lower bound 2.2.3.3.b production rule 1.1.2.a
closed 10.5.1 extended language 1.1.1.a; 1.1.7 lower state 2.2.3.3.b proper 4.4

collateral action 2.2.85 extension 1.1.7 meaningful 4.4 protected 6.0.2.4

colon 1.1.2.c external object 2.2.1 metalanguage 1.1.3.a publication language 1.1.8.b
comma 1.1.2.b false 2.2.3.1.e metanotion 1.1.3.a quintuple 2.2.3.3.b
compile 2.3.c field 2.2.2.k 3 2.2.3.2 minus 2.,2.3.1.c; 10.2.2.g reach 4.4.3.a

completed 6.0.2.a file 5.5.1; 10.5.1 mode 1.1.6.c; 2.2.4.1 refer to 2.2.2.h, 1
component of 2.2,2.h, k follow 1.1.6.8 mode conditions L.h.2 related to 2.2.4.1.1
composite 3.1.2.4 formal language 1.1.1.b multiple value 2.2.3; 2.2.3.3 relationship 2.2; 2.2.2
computer 1.1.1.a ) format 2.2.3; 2.2.3.h name 2,2.2.1; 2.2.3; 2.2.3.5 representation 1.1.8.a
connected to 4.4,3.b halted 6.0.2.a; 10.k.a nil 2.2.2.1; 2.2,3.5.8 representation language
constituent 1.1.6.4;.2.2.2.b hardware langusge 1.1.8.b notion 1.1.2.a 1.1.1.8; 1.1.8
contain 1.1,6.b; 2.2.2.b hold 2.2 object 2.2 required 5.5.1

context conditions 4.h home L4.1.2.b object program 2.3.c _resumed. 6.0.2.a; 10.0.4.b
conversion key 10.5.1 humen being 1\_1_1.3 occurrence 2,2, 1 routine 2.2.2; 2.2.3.h4
convert 5.5.1 identification condition L. k.1 offset 2.2.3.3.b scope 2.2.3.5.a; 2.2.4.2



12,continued 2

select 2.2.3.2; 2.2.3.3.8

semicolon 1.1.L

serial action 2.2.5

smaller than 2.2.2.h, J

small letter 1.1.2.a

standard declaration 10; 10.a

standard file 10.5.1.2

standard mathematical constant
or function 10.a; 10.3

standard operation 10.a; 10.2

standard priority 10.a; 10.2.0

straighten 10.5.0.2

strict language 1.1.1.a; 1.1.2.a

stride 2.2.3.3.b

string 5.5.1

structured from 2.2.h4.1.]J

structured value 2.2.3; 2.2.3.2

sublanguage 2.3.c

subvalue 2.2.2.k; 2.2.3.3.c

successor 6.0.2.a

supersede 2.2.3.3.b; 8.8.2.a

suppressed 5.5.1
symbol 1.1.2.4
synchronization operation 10.a; 10.4
terminal production
1.1.2.8; 1.1.3.e; 1.1.6.a.
terminate 6.0.2.a
textual order 1.1.6.a
tiﬂes 2.2.3.1.¢c, 10.2.3.1

trapscribed from 5.5.1.1

tra&scribed onto 5.5.1.1
transput 5.5.1

t?ansput declaration 10.a; 10.5
true 2.2.3.1.e

undefined 1.1.6.g

uniqueness conditions %.4.3
united from 2.2.k.1.h

‘upper bound 2.2.3.3.b

upper state 2.2.3.3.b

value 2.2.1; 2.2.2.e, £, g3 2.2.3
widen 2.2.3.1.4

written 5.5.1

{Denn eben, wo Begriffe fehlen,

Da stellt ein Wort zur rechten Zeit sich ein.;

Faust,

J.W. von Goethe.} -

EE. Ephemeral Epilogue
EE.1. Errata

EE.1.1. Syntax

a) errata : erratum sequence.
b) erratum :
¢) location :

d) line rumber :

{Cuiusvis hominis est errare, nullius,

nisi insipientis in errore perseverare.

Orationes Phillippicae, M.T. Cicero.}

location 1list, change.
line nunber ; fragment.
set off, shift option.

e) set off : section, paragraph option.
f) section : integral denctation, point symbol, section option.

g) paragraph : TAG.

h) shift : plusmirnus, integral denotation.
i) fragment : top, up to symbol, bottom.

j) top : line number.
k) bottam : line rumber.

1) change : instead of symbol, old text denotation,
substitute symbol, new text, please symbol.

m) old text denotation :

0ld text ; begin of old text,

query symbol, query symbol, query symbol, erd of old text.

EE.1.2. Representations

symbol
instead of symbol
substitute symbol
please symbol
query symbol

{Exemples:
B) 15.2.3.C=T % Xy + Xe2Z % 3

’

representations

3%
>

3%

1

1%.2., 14.2.43, 14.2.47, 15.2.3.c=-T x a > b = ;
0.:11.11.bc # Introduction ??? example. > = ;

c) 15.2.3.¢c=T 3 0.:11.11.be ;
d) 14.2. ; 14.2.43

e) 14.2. ; 15.2.3.¢c 3

£) 1h.2. 3

g)c;



EE1.2. continued

h) +3 ; -7,
i) 0.:11.11.pe ;

EE. 1.3 continued

of the Report than the lower line, then the set of consecutive lines

j) ® Xy > Xz %
the first (last) of which is the upper line (lower line) is considered

. and Step 5 is taken; otherwise, the ther elaboration ig undefined.
gw 3 PI;‘ from n»!’&pl T Ag’&, y@&i"’ A:iiQL’mJ m}%‘lim' it aecount
tep 5: If the constituent old-text-denotation of the constituent change

of the considered erratum is an old-text and the considered set of lin

k) x.y ; Introduction ?9¢ example, }

EE. 1. 3. Semantics

) Errata are elaborated in the follo

tep 1: The errata are considereqd ;
tep 2:

wing steps: X
P comprises exagtly one sequence of Report-tokens which is the same as

that old-text, or if that old-text-denotation is not an old-text amnd
the considered set of lines comprises exactly one sequence of Report-
tokens which is the constituent begin-of-old-text of that old-text-

denotation followed by a nonempty sequence of Report-tokens followed

location-list by the constituent end-of-old-text, then that sequence of Report-token:

> 8nd Step 2 is taken :

‘ep 3: The constituent erratums of the
collatera.lly.

is replaced by a new appearance of the sequence of Report-tokens which

considered .
€rrata are elaborated is the constituent new-text of the constituent change of the considere

erratum, and Step 6 is taken; otherwise, the further elaboration is
undefined ; fow»o\u-ewdfm {’,mwlbmle s Wﬂ“} t N“‘_‘l""““‘w‘}“‘
Step 6: The title of t%é Report and all titles of the Chapter, Section

and paragraph comprising the considered lines are made to refer to the

An erratum i ' nma
- whose constituent location-1ist does not contaj

Ol 1s elaborated in the following steps: 8 come
ep 1: The erratum is considered ;

*P 2: That erratym is considered

instead which i
leport-tokens as would be obtaine 18 the same sequence of

Report, Chapter, Section and paragraph as modified in Step 5, and the
hift-option in the considered '

s

d by replacing each empty constituent

erratum by o plus elaboration of the erratum is complete.

ero-symbol : =Symbol followed
3 ol ; by & 2. Correspondence with the Editor
P 3: That erratum is o '
onsid .
powt ered instead which 1s the same sequence of EE.2.1. Example of a letter to the Editor

Amsterdam, 16 Feb. 196t

{Achéve, petit Jean; c'est fort bien débuté

mber which is} th
at location followe
d by an up-to-symbol
foll .
oved by Les Plaideurs, . J. Racine

he - i i
line-rumber which is} that location 3

 b: Letting 1t(1b)
stand f .
or the 1 Dear Editor,

This morning I received with thanks the Draft Report on ALGOL 68 and

read it with interest. Please convey my feelings of deep appreciation

to your co-authors for the fine work that they achieved. I take the
liberty to suggest the following amendments, which are of a purely

descriptional nature, for the final Report:

< EE.|. &, Exlinaion, _

a) Q‘MWM-%ﬁM%M,Wﬁ&
covmma - syl o w-b-wm&w, o the arcond
kol may Lo owmithd, -

of the Report depending upon whethep

o Tine e © . ymbol, and, if the upper line ang
ound and if the upper line is not closer to the eng




2. 1. continued

-lou, 5.h.1.b, T.1.1.2, 8.1.1.b, 8.1.1.1, 8.2.1.1.4
% delivering a » x
-2. continued +2:3, 8.2.0.1. continued +12, 8.2.0.1. continued +2L
. t ]
.0.1. continued +25, 8.2.0.1. continued +26, 8.2.0.1. continued +27
3
2,48, 11.1.42, 11.2.42, 11.2.43, 11.2.4h, 11.3.43, 11.4. 44 l
¢ delivering-a- + =
+e3.43 = delivering-a-???-delivering-a -
real-parameter-and-a-procedure
1.9, 1.2.1.u, 1.2.2.h, 1.2.h.n, 1.2.4.0+1, 4.3.1.b, 8.1.1.a, 8.1.1.c
. 9 . - -
1.h+1, 8.1.1.§ = DELIVETY » MODETY ,
1.h % DELIVETY : dep DELIVETY + MODETY : dep MODETY =
2.k % k)??7..> x
1.1.b # called???. -~

. called MODETY FORM : fitted procedure MODETY FORM. =
Telec % ¢)222. + =

hese amendments do not change the language at‘all, but do diminish
?umber of rules by two and, moreover, delete over three hundred
ingless letters. Of course, the deletion of rules 1.2.2.k and

1.1.c will cause some changes in the paragraphs of the rules

owing them, in the examples and, possibly, in some cross references.

d you be so kind to take care of this yourself if you accept these
dments?

f you answer this letter at all, would you then tell me why you
a0t unify statements and expressions by considering statements as
by-expressions like in Orthogonal Design [4]?

Yours sincerely,

A. van W.

s 8.2.2.1.a, 8.7.1.b+1 ﬁ

| EE.2.2. Reply by the Editor to the letter in EE.2.1

Amsterdam, 16 Feb. 1968.

Dear A. van W.,

Many thanks for your prompt reaction to the receipt of the Draft
Report. As to your amendments, I fully agree with them; actually, I had
also found these very changes myself, but too late for incorporation in
the text. I shall do my best to have them incorporated in the final
Report and, of course, to meke the necessary changes you asked for in

paragraphs, examples and cross references.

Now about the statements. We had much trouble understanding the
coercion process, dear me; especially skip, jump and nihil caused us a
lot of ambiguous parsings. At an early stage, we separated the statements
from the expressions again because we thought that this alleviated the
problem. Now that the tempest has passed, I see that you can very well
unify them again to great advantage. I shall sketch it for you, since
you seem so much interested in our work. The errata are assumed to be

elaborated after yours:

6.0.1,h ¥ . > .

i) SOME statement : SOME void expression. x

1.2.1.u *¥ u)???. » u) RESULT : MODE ; void. =

1.2.1.q , 1.2.h.2, 1.2.4.n, 1.2.4.n+1 x MODETY ~ RESULT =
1.2.3.b # b)77%7. » b) CLAUSE : RESULT expression. =
6.0.1.e # XME statement. » SOME void expression. =
6.1.1.e+1 * statements - void expressions =

6.2:6.3.-1 % Unitary statements??%?6.3.2.a).} > =

Telelow, Tolelex, To1.1.2+1 = tall > void tail =
8.0.1.a:8.0.1.e+1 = a)???relation. >

_a) COERCETY unitary RESULT expression:

COERCETY RESULT formary ; COERCETY RESULT confrontation.

b) COERCETY RESULT formary :
COERCETY RESULT ADIC formulation ; COERCETY RESULT primary.

¢) COERCETY MODE ADIC formulation : COERCETY MODE ADIC formula.

d) void ADIC formulation : void ADIC formula ; called void ADIC formula ;
NONPROC ADIC formula ; called NONPROC ADIC formula.

e) hip FORCED MODE ADIC formula : FORCED MODE ADIC formula.



EE.2.2. continued

£) void confrontation : MODE confrontation.
g) hip FORCED MODE confrontation : FORCED MODE confrontation.
n) MODE confrontation : MODE assignation ;
MODE conformity relation ; MODE identiLy relation. =
8.1.1.a:8.1.1.j # a)???dep MODETY. -~
a)* COERCETY formula : COERCETY RESULT ADIC formula.
b) RESULT PRIORITY formula : LMODE PRIORITY operand,
procedure with a LMODE parameter and a RMODE parameter
RESULT PRIORITY operator, RMODE PRIORITY plus one operard .
c)* operand : MODE ADIC operand.
d) MDDE PRIORITY operard :
adjusted MODE PRIORITY formula ; MODE PRIORITY plus one operand.
e) MODE PRIORITY NINE plus one operand : MODE monadic operand.
£) MODE monadic operard :
adjusted MODE monadic formula ; hip adjusted MODE primary.
g) RESULT monadic formula : RESULT dep ; procedure with a RMODE
parameter RESULT monadic operator, RMODE monadic operand.
h) MODE dep :
value of symbol, peeled reference to MODE monadic formila ;
value of symbol, hip peeled reference to mode primary.
i)# depression : MODE dep. =
8.2.1.1.b:8.2.1.1.d = b)??7?2d) ~
b) called COERCEND : fitted procedure COERCEND.
c) %
8.2.1.1.e % e) + d) =
8.2.2.1.b # b)77%. + =
8.3.1.a:8.3.1.a+1 ¥ a)???cohesion. »
a) COERCETY RESULT primary : COERCETY CLOSED RESULT expression ;
COERCETY RESULT cohesion ; RESULT call. x
8.3.1.e = e)?7%7. >
e) skip : skip symbol.
f) jump : goto symbol option, label identifier.
g) reference to MODE nihil : nil symbol.
h) void cohesion : NONPROC cohesion ; void expression call ; skip ; jump.
i) void call : called void cohesion ; called NONPROC coheslon. *

EE.2.2. continued 2

of course, some examples, cross references and section headings must be
modified appropriately, and the scanty Semantics of 6.2.2 must Dbe inserted
into 8.3.2, where it fits much better.

The effect is quite satisfying: one rule less, a whole section {6.2} gone,

and a much cleaner set up. This is, of course, also for the final Report.

Yours for ever,

Editor.

EE.2.3. Second example of a letter to the Editor

Somevwhere, 1 June 1968.

sir,
it stinks,
yours,

A.N. Onymous. ~
EE.2.4. Reply option by the Editor to the letter in EE.2.3
{Empty (the letter was not received in time, see PP.3.b). }

FE.2.5. Third example of a letter to the Editor

From Amsterdam to Calgary, 30 Jen. 1968

Dear Editor,
Please consider the following errata to have been elaborated:

1.2.4.h43 % Rule c > Rule 4 *
2.2.43 % Carroll - Carroll. ¥
2,2.+h % "computer" - computer ¥
2.2.2.142 = {8.8.2.c} (8.8.2.¢c) ¥
2.2.3.1.b+4, 2.2.3.5.a % called ~ *
2.2.3.1.c+46 * divided > "divided ¥
2,2.5.43 % either + *®

3el.1l.ctb6 ®E > FE

3e1010d-1 % :F: > F: ®

3.1.2,d+2 cpaital + capital *
ho1.1.e43 1.2.2.t > 1.2.2.8 #
4,1,2,a46 = "is > is" =

boh o+l mALGOL 68 programs" > "ALGOL-68" programs %

»

x



2.5. continued

e 3. €=5

® max > max = %

+.Step 5+3. % each -+ the first and last constituent =

2. 8+3 ® successor - "successor" =

.2.c % 10.4.b > 10.b.a =

.2.042 # 10.k.a > 10.4.b =

o leo+1 % option -+ =

o 1op+1 ¥ . + 3 EMPTY. =

-2.b+1:3 = either???symbols + an actual-declarer or formal-declarer x
2o =1 % 9,2b > 9,2,b =

. 1.d = ADIC formula - confrontation s

2. continued+i1 . ® operator-tokens as - operators =

0.1. continued+9 = 8,1.1.b, - 8.1.1.b, ¢ =

0. 1. ‘continued+1k, 8.2.0.1. continued+15, 8.2.0.1. continued+16,
0.1. continued+17 * 8.1.1.c + 8.1.1.e #

0.1, continued+18 = 8.1.1.d + 8.1.1.F

0.1. continued+19 = 8,1.1.e + 8.1.1.g =

0.1. continued+26 # 8.3.1.c + 8.3.1.b

2.2, ‘continued+13 x coercend - conditional-expression =
2.2, continued+13 % (x) + the routine (x) or the routine x
2.2, continued+16 = coercend - serial-expression x

6-20-1
2.44+T
1.f

2.-1
2.8+ 1
2. 842

. b+2:3
6

bo-1
1.+8
2. b+1k,

% egac) » esac)} u
# structure (8,5.1.f) + veld (8.5.1.g) x

E ¢+ ! MOIE veld.
g) MODE veld : =
# f) > g)x

x expressions and structures -» velds =
# 3 * , vhere the elaboration of a structure-pack
is that of its constituent structure ; =
] s the???; » ;
X empty; -+ empty.
d) Each representation of a symbol appearing in Sections

9.1 up to 9.5 may be replaced by any other representation,'

if any, of the same symbol. x
x 8kip) + 8kip)) = ‘
x mode » made x ,
10.5.3.c-h = & ine o1 int n x

EE.2.5. continued 2

10.5.2.0416 % 7 : tnt n+ : tnt n =
10.5.3.b+18 x gtring + string =
10.5.3.¢-2 = get?77# + —? x

11.11, #* manipluation + manipulation #

. We plan to submit, if necessary, (a) loose-leaf letter(s) comprising
other errata.
Collegialiter,
The authors.

EE.2.6. Reply by the Editor to the letter in EE.2.5.
Amsterdem, 31 Jan. 1968
Dear Authors,

The errata comprised in your letter of 30 Jan. 1968 and also those,
possibly, comprised in (an) other letter(s) by you if communicated to
the readers of the ALGOL Bulletin, are considered to have been elaborate

Ours,
Editor.



