
Bold taggles in Algol 68
GNU68-2025-002 (draft)

by Jose E. Marchesi



Copyright c© 2025 Jose E. Marchesi.

You can redistribute and/or modify this document under the terms of the GNU
General Public License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.



Chapter 1: Informal Description 1

Foreword

The following specification has been released under the auspices of the GNU Algol 68 Working
Group, and has been scrutinized to ensure that

a. it is strictly upwards-compatible with Algol 68,

b. it is consistent with the philosophy and orthogonal framework of the language, and

c. it fills a clearly discernible gap in the expressive power of that language.

The source of this document can be found at https://git.sr.ht/~jemarch/gnu68.

The informal description of this proposal introduces the proposed new language features, pro-
viding a rationale and usage examples.

The formal definition of this proposal uses the existing formalism and conventions of the Stan-
dard Hardware Representation for Algol 68, and it is expressed as modifications to the Standard
Hardware Representation.

Finally, the implementation notes of this proposal describes a way in which the features added
by this specification can be implemented. No implementer should feel committed to do things
as described there; the same language facilities may well be implementable in other ways, more
suitable to specific implementations.

1 Informal Description

Bold words and tags

The Standard Hardware Representation for Algol 68 defines a bold word as the hardware repre-
sentation of tokens whose representation in the reference language is written using bold letters
and digits, such as for example bold begin symbol, completion symbol, and bold-letter-f-

letter-o-letter-o. These sort of tokens are used in the strict language to denote syntactic
marks, standard modes, user-defined mode indicators and both predefined and user-defined
operator indicators.

The Standard Hardware Representation for Algol 68 defines a tag as the hardware representation
of tokens whose representation in the reference language is written using non-bold letters and
digits, such as for example letter-f-letter-o-letter-o. These sort of tokens are used in the
strict language to denote identifiers, be them predefined or defined by the user via an identity
declaration for example.

Stropping regimes

The way of writing bold words and tags using worthy characters depends on the particular strop-
ping regime in use. The Standard Hardware Representation describes three standard stropping
regimes that result in three different ways to write bold words.

In POINT stropping bold words are written writing a point character (.) followed by the worthy
letters or digits corresponding to the bold-faced letters or digits in the word. For example, bold
begin symbol can be represented as .begin or .BEGIN or .bEgIn. In this stropping regime it
is possible to represent bold-faced digits, like in .algol68.

In the UPPER regime bold words are written like in POINT, but the leading point character
can be omitted if the bold word is not immediately preceded by another bold word, and only
upper-case letters are to be used in bold words. For example, bold begin symbol is represented
as BEGIN. In this stropping regime it is not possible to omit the leading point character when a
bold word includes a bold-faced digit, as there is not such a thing as an upper-case digit.

The RES regime handles bold words in exactly the same way than POINT, and only differs
from it in its handling of tags.

https://git.sr.ht/~jemarch/gnu68


Chapter 1: Informal Description 2

Readability of indicators

Bold words are therefore composed by letters and digits, typed as bold letters and digits in the
reference language. It is very common, however, for user-defined mode indicators to contain
several natural words. Consider for example the following mode declaration:

mode treenode = struct (treenodepayload data, ref treenode next);

The mode indicators treenode and treenodepayload can be a little difficult to read, as the
different natural words implicated in the indicators are not easily distinguishable at first sight.

This problem can be alleviated by using the written form of bold words with a leading point
character (which is theoretically supported in all standard stropping regimes) that supports
mixing case. This leads to mode indicators such as .TreeNodePayload which is much more
readable.

However, modern Algol 68 implementations tend to implement a slightly non-conforming UP-
PER stropping where writing bold words leaded by point characters is no longer supported1. In
these cases it is no longer possible to use mixing case.

The above discussion also applies to operator indicators, even though these are seldom composed
by more than one natural word, usually a verb.

Bold taggles

This GNU extension allows to use underscore characters (_) in bold words in all standard
stropping regimes. This is done by specifying that a bold word is written as a sequence of
taggles rather than as a sequence of worthy letters and digits. Each taggle itself is written as
a sequence of one or more worthy letter and digits, optionally followed by a trailing underscore
character.

It is now possible to write the mode definition above using UPPER stropping as:

MODE TREE_NODE = STRUCT (TREE_NODE_PAYLOAD data, REF TREE_NODE next);

Note that from the definition of taggle it follows that a trailing underscore is allowed, like in
PRIVATE_MODE_, but no prefixing underscores are allowed, and indicators such as FOO__BAR and
FOO_BAR__ are not legal.

Tags are also defined in terms of taggles in all the standard stropping regimes. However, unlike
in tags, no typographic display features can appear between the taggles in a written form of
a bold word. This means that the mode indicator treenodepayload cannot be written as TREE
NODE PAYLOAD in UPPER stropping.

Comparison to similar extensions

This GNU extension is not to be confused with the support provided by the Algol 68 Genie
interpreter for using underscore characters in tags and bold words. There are two important
and rather fundamental differences.

First, the underscore characters in Algol 68 Genie’s tags and bold words are integral part of the
represented identifiers, mode indicators and operator indicators, and not just a convenient way
to write more readable written forms of these. Therefore, in Algol 68 Genie TREE_NODE denotes
the mode indicator tree node, not treenode as mandated by the Report.

Second, Algol 68 Genie doesn’t use the concept of taggle, and therefore a set of arbitrary rules has
to be used for inserting underscore characters in both tags and bold words. Leading underscore
characters are not allowed. Therefore _code and __TREE_NODE are not valid. Zero or more
trailing underscore characters are allowed, but these are not part of the represented identifiers
or indicators. Therefore code__ and TREE_NODE__ are both allowed and represent the same

1 This is the case of both Algol 68 Genie and the GCC Algol 68 front-end



3

than code and TREE_NODE respectively. Any number of sequences of one or more underscore
characters are allowed anywhere else in the tags or bold words. Therefore both foo___bar and
TREE__PAYLOAD_FACTOR are both valid. In this case the underscore characters become integral
part of the denoted identifier and mode indicator, respectively.

2 Formal Description

The description of the stropping of bold words in POINT stropping in the Standard Hardware
Representation is changed from:

3.5.1

Bold words.

- A bold word is written as a point (".") followed, in order, by the

worthy letters or digits corresponding to the bold-faced letters or

digits in the word.

- A bold word must be followed by a disjunctor.

to
3.5.1

Bold words.

- A bold word is written as a point (".") followed by a sequence of

{one or more} taggles whose worthy letters and digits correspond, in

order, to the bold-faced letters and digits in the word.

When the extension is enabled, the new rule for writing bold words applies to all the three
standard stropping regimes described in the Standard Hardware Representation.

3 Implementation Notes

Stropping is to be implemented purely at the lexical level and it must not have any impact on
the letters and digits that constitute bold words and tags. Therefore, in principle, of all the
components of a compiler or interpreter only the lexical analyzer (or tokenizer) shall concern
itself with the stropping regime.

A programming editor can highlight any sequence of two or more consecutive underscore char-
acters as an error: these are not syntactically valid in any standard stropping regime, out of
string denotations and pragments.

Implementations are advised to always gate the usage of this extension through a command-line
option. Appropriate PORTCHECK diagnostics should be emitted whenever appropriate.


